L(s) = 1 | − 11.2i·2-s + 19.1i·3-s − 94.0·4-s + 215.·6-s − 70.9i·7-s + 696. i·8-s − 125.·9-s − 161.·11-s − 1.80e3i·12-s + 169i·13-s − 796.·14-s + 4.80e3·16-s + 121. i·17-s + 1.40e3i·18-s + 3.11e3·19-s + ⋯ |
L(s) = 1 | − 1.98i·2-s + 1.23i·3-s − 2.93·4-s + 2.44·6-s − 0.547i·7-s + 3.84i·8-s − 0.515·9-s − 0.401·11-s − 3.61i·12-s + 0.277i·13-s − 1.08·14-s + 4.69·16-s + 0.101i·17-s + 1.02i·18-s + 1.97·19-s + ⋯ |
Λ(s)=(=(325s/2ΓC(s)L(s)(−0.447−0.894i)Λ(6−s)
Λ(s)=(=(325s/2ΓC(s+5/2)L(s)(−0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
325
= 52⋅13
|
Sign: |
−0.447−0.894i
|
Analytic conductor: |
52.1247 |
Root analytic conductor: |
7.21974 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ325(274,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 325, ( :5/2), −0.447−0.894i)
|
Particular Values
L(3) |
≈ |
0.2319695603 |
L(21) |
≈ |
0.2319695603 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 13 | 1−169iT |
good | 2 | 1+11.2iT−32T2 |
| 3 | 1−19.1iT−243T2 |
| 7 | 1+70.9iT−1.68e4T2 |
| 11 | 1+161.T+1.61e5T2 |
| 17 | 1−121.iT−1.41e6T2 |
| 19 | 1−3.11e3T+2.47e6T2 |
| 23 | 1+3.09e3iT−6.43e6T2 |
| 29 | 1+3.17e3T+2.05e7T2 |
| 31 | 1+3.51e3T+2.86e7T2 |
| 37 | 1+6.99e3iT−6.93e7T2 |
| 41 | 1+1.95e4T+1.15e8T2 |
| 43 | 1−1.33e4iT−1.47e8T2 |
| 47 | 1+7.63e3iT−2.29e8T2 |
| 53 | 1−2.77e4iT−4.18e8T2 |
| 59 | 1+3.30e4T+7.14e8T2 |
| 61 | 1+3.31e4T+8.44e8T2 |
| 67 | 1+2.45e4iT−1.35e9T2 |
| 71 | 1−1.66e4T+1.80e9T2 |
| 73 | 1+5.25e3iT−2.07e9T2 |
| 79 | 1−3.12e3T+3.07e9T2 |
| 83 | 1+2.51e4iT−3.93e9T2 |
| 89 | 1+634.T+5.58e9T2 |
| 97 | 1+1.56e5iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.37495893611789225998182538609, −9.550810987197325993177104739603, −8.988462148402855868857561770484, −7.69511333762359243813683008810, −5.40658069393873363384542486104, −4.61576196491944571205065296332, −3.74909990046918467073142160851, −2.92836787524459980163867653520, −1.43476455682323609521995315516, −0.06993881135606415513468755086,
1.27054786711173400915979774472, 3.43806397749804201964257203973, 5.15779066931417445457433534902, 5.69245967362803549093878154765, 6.80735299296492054612977253762, 7.48204204050828274333532016217, 8.056722694638745836980227475367, 9.110731259413024074958497301342, 9.941441555435790639911985264019, 11.83221017044450593585265106091