Properties

Label 2-325-13.9-c1-0-5
Degree $2$
Conductor $325$
Sign $-0.252 - 0.967i$
Analytic cond. $2.59513$
Root an. cond. $1.61094$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.15 + 1.99i)2-s + (0.5 − 0.866i)3-s + (−1.65 − 2.86i)4-s + (1.15 + 1.99i)6-s + (−0.5 − 0.866i)7-s + 2.99·8-s + (1 + 1.73i)9-s + (−0.802 + 1.39i)11-s − 3.30·12-s + 3.60·13-s + 2.30·14-s + (−0.151 + 0.262i)16-s + (3.80 + 6.58i)17-s − 4.60·18-s + (2.80 + 4.85i)19-s + ⋯
L(s)  = 1  + (−0.814 + 1.41i)2-s + (0.288 − 0.499i)3-s + (−0.825 − 1.43i)4-s + (0.470 + 0.814i)6-s + (−0.188 − 0.327i)7-s + 1.06·8-s + (0.333 + 0.577i)9-s + (−0.242 + 0.419i)11-s − 0.953·12-s + 1.00·13-s + 0.615·14-s + (−0.0378 + 0.0655i)16-s + (0.922 + 1.59i)17-s − 1.08·18-s + (0.643 + 1.11i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.252 - 0.967i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.252 - 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(325\)    =    \(5^{2} \cdot 13\)
Sign: $-0.252 - 0.967i$
Analytic conductor: \(2.59513\)
Root analytic conductor: \(1.61094\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{325} (126, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 325,\ (\ :1/2),\ -0.252 - 0.967i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.565411 + 0.731987i\)
\(L(\frac12)\) \(\approx\) \(0.565411 + 0.731987i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
13 \( 1 - 3.60T \)
good2 \( 1 + (1.15 - 1.99i)T + (-1 - 1.73i)T^{2} \)
3 \( 1 + (-0.5 + 0.866i)T + (-1.5 - 2.59i)T^{2} \)
7 \( 1 + (0.5 + 0.866i)T + (-3.5 + 6.06i)T^{2} \)
11 \( 1 + (0.802 - 1.39i)T + (-5.5 - 9.52i)T^{2} \)
17 \( 1 + (-3.80 - 6.58i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-2.80 - 4.85i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (1.5 - 2.59i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (-3.10 + 5.37i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 + 4T + 31T^{2} \)
37 \( 1 + (-1.80 + 3.12i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (1.5 - 2.59i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (5.10 + 8.84i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + 9.21T + 47T^{2} \)
53 \( 1 - 3.21T + 53T^{2} \)
59 \( 1 + (-5.40 - 9.36i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-0.5 - 0.866i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (3.5 - 6.06i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (2.40 + 4.17i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 - 0.788T + 73T^{2} \)
79 \( 1 - 5.21T + 79T^{2} \)
83 \( 1 - 9.21T + 83T^{2} \)
89 \( 1 + (-3.10 + 5.37i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (4.19 + 7.26i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.96846106842072110437355093054, −10.39085008000391255936837556074, −9.961303153497257955958289818000, −8.597627009926907590430072397338, −7.972606871790070414945549898896, −7.33900165743966071498081908284, −6.26732699411462469006294834761, −5.44493730143086459700876841250, −3.76875283990016121837267682619, −1.52332187916338461010133311046, 0.977804594119646731272313460937, 2.85810061674438127217345055954, 3.50328552729800497329354268140, 5.00229982813411728945469653823, 6.59410422657347910222191309214, 8.034059161771232588227221268947, 9.037059217912272236157611903365, 9.481161302937695425632717230012, 10.35326202551668833516751277073, 11.26087904461792788765892937685

Graph of the $Z$-function along the critical line