L(s) = 1 | + (0.651 − 1.12i)2-s + (0.5 − 0.866i)3-s + (0.151 + 0.262i)4-s + (−0.651 − 1.12i)6-s + (−0.5 − 0.866i)7-s + 3·8-s + (1 + 1.73i)9-s + (2.80 − 4.85i)11-s + 0.302·12-s − 3.60·13-s − 1.30·14-s + (1.65 − 2.86i)16-s + (0.197 + 0.341i)17-s + 2.60·18-s + (−0.802 − 1.39i)19-s + ⋯ |
L(s) = 1 | + (0.460 − 0.797i)2-s + (0.288 − 0.499i)3-s + (0.0756 + 0.131i)4-s + (−0.265 − 0.460i)6-s + (−0.188 − 0.327i)7-s + 1.06·8-s + (0.333 + 0.577i)9-s + (0.845 − 1.46i)11-s + 0.0874·12-s − 1.00·13-s − 0.348·14-s + (0.412 − 0.715i)16-s + (0.0478 + 0.0828i)17-s + 0.614·18-s + (−0.184 − 0.318i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.252 + 0.967i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.252 + 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.57522 - 1.21675i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.57522 - 1.21675i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + 3.60T \) |
good | 2 | \( 1 + (-0.651 + 1.12i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.5 + 0.866i)T + (-1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 + (0.5 + 0.866i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.80 + 4.85i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-0.197 - 0.341i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.802 + 1.39i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.5 - 2.59i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (4.10 - 7.11i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 4T + 31T^{2} \) |
| 37 | \( 1 + (1.80 - 3.12i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (1.5 - 2.59i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.10 - 3.64i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 5.21T + 47T^{2} \) |
| 53 | \( 1 + 11.2T + 53T^{2} \) |
| 59 | \( 1 + (5.40 + 9.36i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.5 - 6.06i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-8.40 - 14.5i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 15.2T + 73T^{2} \) |
| 79 | \( 1 + 9.21T + 79T^{2} \) |
| 83 | \( 1 + 5.21T + 83T^{2} \) |
| 89 | \( 1 + (4.10 - 7.11i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (7.80 + 13.5i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.39542642490891031770567349471, −10.84736996503307230754316620310, −9.731794915013741992391298648287, −8.510092599688663820859761106275, −7.54827420226115694303041201209, −6.74359262157074900666196594213, −5.20896297522348838823106162448, −3.92016790893572744347527375906, −2.91937716854347224178348248063, −1.55780284555723357196890941138,
2.05415145370801478712475317421, 3.98071201890444720609780830678, 4.73553918528322940323808604370, 5.98161892275181840749330747399, 6.92339586144494068228484129047, 7.66758887332794813686196299996, 9.240789475778321231571414459340, 9.744307546039387493967920618624, 10.67954763191145735852078674008, 12.12995248868432001520066618736