Properties

Label 2-325-1.1-c9-0-159
Degree $2$
Conductor $325$
Sign $-1$
Analytic cond. $167.386$
Root an. cond. $12.9377$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 21.3·2-s + 195.·3-s − 57.5·4-s + 4.15e3·6-s + 2.27e3·7-s − 1.21e4·8-s + 1.83e4·9-s − 7.17e3·11-s − 1.12e4·12-s − 2.85e4·13-s + 4.85e4·14-s − 2.29e5·16-s + 4.47e5·17-s + 3.91e5·18-s − 5.28e5·19-s + 4.44e5·21-s − 1.53e5·22-s − 2.24e6·23-s − 2.36e6·24-s − 6.08e5·26-s − 2.54e5·27-s − 1.31e5·28-s + 5.98e6·29-s + 1.69e5·31-s + 1.32e6·32-s − 1.40e6·33-s + 9.54e6·34-s + ⋯
L(s)  = 1  + 0.942·2-s + 1.39·3-s − 0.112·4-s + 1.31·6-s + 0.358·7-s − 1.04·8-s + 0.933·9-s − 0.147·11-s − 0.156·12-s − 0.277·13-s + 0.337·14-s − 0.874·16-s + 1.30·17-s + 0.879·18-s − 0.930·19-s + 0.498·21-s − 0.139·22-s − 1.67·23-s − 1.45·24-s − 0.261·26-s − 0.0921·27-s − 0.0403·28-s + 1.57·29-s + 0.0329·31-s + 0.223·32-s − 0.205·33-s + 1.22·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(325\)    =    \(5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(167.386\)
Root analytic conductor: \(12.9377\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 325,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
13 \( 1 + 2.85e4T \)
good2 \( 1 - 21.3T + 512T^{2} \)
3 \( 1 - 195.T + 1.96e4T^{2} \)
7 \( 1 - 2.27e3T + 4.03e7T^{2} \)
11 \( 1 + 7.17e3T + 2.35e9T^{2} \)
17 \( 1 - 4.47e5T + 1.18e11T^{2} \)
19 \( 1 + 5.28e5T + 3.22e11T^{2} \)
23 \( 1 + 2.24e6T + 1.80e12T^{2} \)
29 \( 1 - 5.98e6T + 1.45e13T^{2} \)
31 \( 1 - 1.69e5T + 2.64e13T^{2} \)
37 \( 1 + 1.26e7T + 1.29e14T^{2} \)
41 \( 1 + 2.76e7T + 3.27e14T^{2} \)
43 \( 1 - 2.27e7T + 5.02e14T^{2} \)
47 \( 1 + 5.32e7T + 1.11e15T^{2} \)
53 \( 1 + 3.18e7T + 3.29e15T^{2} \)
59 \( 1 - 1.14e8T + 8.66e15T^{2} \)
61 \( 1 + 7.80e7T + 1.16e16T^{2} \)
67 \( 1 + 8.40e7T + 2.72e16T^{2} \)
71 \( 1 - 1.25e8T + 4.58e16T^{2} \)
73 \( 1 - 1.88e8T + 5.88e16T^{2} \)
79 \( 1 + 4.28e8T + 1.19e17T^{2} \)
83 \( 1 + 2.43e8T + 1.86e17T^{2} \)
89 \( 1 - 2.92e8T + 3.50e17T^{2} \)
97 \( 1 + 1.14e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.545076880058830449598037768339, −8.376348336581657827835148668194, −8.080062502997130057589491677363, −6.62622685975630959623887848520, −5.45696926015440910854992501382, −4.43181291457768414397565722224, −3.55189754537267878883954406957, −2.75928007370150604573328908444, −1.68516957776384951383071061495, 0, 1.68516957776384951383071061495, 2.75928007370150604573328908444, 3.55189754537267878883954406957, 4.43181291457768414397565722224, 5.45696926015440910854992501382, 6.62622685975630959623887848520, 8.080062502997130057589491677363, 8.376348336581657827835148668194, 9.545076880058830449598037768339

Graph of the $Z$-function along the critical line