Properties

Label 2-325-1.1-c5-0-43
Degree $2$
Conductor $325$
Sign $-1$
Analytic cond. $52.1247$
Root an. cond. $7.21974$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.83·2-s − 11.9·3-s − 28.6·4-s + 21.9·6-s − 112.·7-s + 111.·8-s − 100.·9-s + 162.·11-s + 341.·12-s + 169·13-s + 206.·14-s + 711.·16-s − 379.·17-s + 185.·18-s − 284.·19-s + 1.33e3·21-s − 299.·22-s + 4.18e3·23-s − 1.32e3·24-s − 310.·26-s + 4.09e3·27-s + 3.21e3·28-s + 6.27e3·29-s − 7.55e3·31-s − 4.87e3·32-s − 1.94e3·33-s + 697.·34-s + ⋯
L(s)  = 1  − 0.324·2-s − 0.765·3-s − 0.894·4-s + 0.248·6-s − 0.865·7-s + 0.615·8-s − 0.414·9-s + 0.405·11-s + 0.684·12-s + 0.277·13-s + 0.281·14-s + 0.694·16-s − 0.318·17-s + 0.134·18-s − 0.180·19-s + 0.661·21-s − 0.131·22-s + 1.65·23-s − 0.470·24-s − 0.0901·26-s + 1.08·27-s + 0.773·28-s + 1.38·29-s − 1.41·31-s − 0.841·32-s − 0.310·33-s + 0.103·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(325\)    =    \(5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(52.1247\)
Root analytic conductor: \(7.21974\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 325,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
13 \( 1 - 169T \)
good2 \( 1 + 1.83T + 32T^{2} \)
3 \( 1 + 11.9T + 243T^{2} \)
7 \( 1 + 112.T + 1.68e4T^{2} \)
11 \( 1 - 162.T + 1.61e5T^{2} \)
17 \( 1 + 379.T + 1.41e6T^{2} \)
19 \( 1 + 284.T + 2.47e6T^{2} \)
23 \( 1 - 4.18e3T + 6.43e6T^{2} \)
29 \( 1 - 6.27e3T + 2.05e7T^{2} \)
31 \( 1 + 7.55e3T + 2.86e7T^{2} \)
37 \( 1 + 7.06e3T + 6.93e7T^{2} \)
41 \( 1 - 4.16e3T + 1.15e8T^{2} \)
43 \( 1 - 2.15e4T + 1.47e8T^{2} \)
47 \( 1 - 2.26e4T + 2.29e8T^{2} \)
53 \( 1 - 4.77e3T + 4.18e8T^{2} \)
59 \( 1 + 4.83e4T + 7.14e8T^{2} \)
61 \( 1 - 3.65e3T + 8.44e8T^{2} \)
67 \( 1 + 1.58e4T + 1.35e9T^{2} \)
71 \( 1 + 3.72e4T + 1.80e9T^{2} \)
73 \( 1 + 2.93e4T + 2.07e9T^{2} \)
79 \( 1 + 4.49e4T + 3.07e9T^{2} \)
83 \( 1 - 2.37e4T + 3.93e9T^{2} \)
89 \( 1 - 561.T + 5.58e9T^{2} \)
97 \( 1 + 3.12e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.41391486160668984635370733001, −9.148454679607861526615007893044, −8.824415704862137295758706667795, −7.36559270049813849118169697315, −6.30772447135876289305919091828, −5.38112871652369070745587107739, −4.30210116310734126445653076622, −3.03878643102663109794731415565, −1.02225915352418629172568426778, 0, 1.02225915352418629172568426778, 3.03878643102663109794731415565, 4.30210116310734126445653076622, 5.38112871652369070745587107739, 6.30772447135876289305919091828, 7.36559270049813849118169697315, 8.824415704862137295758706667795, 9.148454679607861526615007893044, 10.41391486160668984635370733001

Graph of the $Z$-function along the critical line