Properties

Label 2-325-1.1-c5-0-39
Degree $2$
Conductor $325$
Sign $1$
Analytic cond. $52.1247$
Root an. cond. $7.21974$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·2-s − 6·3-s − 7·4-s + 30·6-s + 244·7-s + 195·8-s − 207·9-s + 794·11-s + 42·12-s + 169·13-s − 1.22e3·14-s − 751·16-s + 1.53e3·17-s + 1.03e3·18-s + 2.70e3·19-s − 1.46e3·21-s − 3.97e3·22-s + 702·23-s − 1.17e3·24-s − 845·26-s + 2.70e3·27-s − 1.70e3·28-s − 5.03e3·29-s − 3.63e3·31-s − 2.48e3·32-s − 4.76e3·33-s − 7.67e3·34-s + ⋯
L(s)  = 1  − 0.883·2-s − 0.384·3-s − 0.218·4-s + 0.340·6-s + 1.88·7-s + 1.07·8-s − 0.851·9-s + 1.97·11-s + 0.0841·12-s + 0.277·13-s − 1.66·14-s − 0.733·16-s + 1.28·17-s + 0.752·18-s + 1.71·19-s − 0.724·21-s − 1.74·22-s + 0.276·23-s − 0.414·24-s − 0.245·26-s + 0.712·27-s − 0.411·28-s − 1.11·29-s − 0.679·31-s − 0.428·32-s − 0.761·33-s − 1.13·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(325\)    =    \(5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(52.1247\)
Root analytic conductor: \(7.21974\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 325,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.574274019\)
\(L(\frac12)\) \(\approx\) \(1.574274019\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
13 \( 1 - p^{2} T \)
good2 \( 1 + 5 T + p^{5} T^{2} \)
3 \( 1 + 2 p T + p^{5} T^{2} \)
7 \( 1 - 244 T + p^{5} T^{2} \)
11 \( 1 - 794 T + p^{5} T^{2} \)
17 \( 1 - 1534 T + p^{5} T^{2} \)
19 \( 1 - 2706 T + p^{5} T^{2} \)
23 \( 1 - 702 T + p^{5} T^{2} \)
29 \( 1 + 5038 T + p^{5} T^{2} \)
31 \( 1 + 3634 T + p^{5} T^{2} \)
37 \( 1 - 7058 T + p^{5} T^{2} \)
41 \( 1 + 294 T + p^{5} T^{2} \)
43 \( 1 + 7618 T + p^{5} T^{2} \)
47 \( 1 - 3020 T + p^{5} T^{2} \)
53 \( 1 + 626 T + p^{5} T^{2} \)
59 \( 1 + 30066 T + p^{5} T^{2} \)
61 \( 1 + 5806 T + p^{5} T^{2} \)
67 \( 1 - 12436 T + p^{5} T^{2} \)
71 \( 1 - 4734 T + p^{5} T^{2} \)
73 \( 1 - 14694 T + p^{5} T^{2} \)
79 \( 1 + 39804 T + p^{5} T^{2} \)
83 \( 1 - 41776 T + p^{5} T^{2} \)
89 \( 1 - 7970 T + p^{5} T^{2} \)
97 \( 1 - 78050 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.93268197945750802378450225353, −9.599092770832384613825554651340, −8.941140121557377958390470291700, −8.045372538600348489711077013736, −7.31329076298911122999566205902, −5.73780273324252552816554224473, −4.89483882811998413310341502422, −3.68206536575586481353975698950, −1.53357497037579532391402269917, −0.959457554031880286888127959311, 0.959457554031880286888127959311, 1.53357497037579532391402269917, 3.68206536575586481353975698950, 4.89483882811998413310341502422, 5.73780273324252552816554224473, 7.31329076298911122999566205902, 8.045372538600348489711077013736, 8.941140121557377958390470291700, 9.599092770832384613825554651340, 10.93268197945750802378450225353

Graph of the $Z$-function along the critical line