Properties

Label 2-325-1.1-c5-0-14
Degree $2$
Conductor $325$
Sign $1$
Analytic cond. $52.1247$
Root an. cond. $7.21974$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.15·2-s − 29.2·3-s − 14.7·4-s + 121.·6-s − 42.5·7-s + 194.·8-s + 611.·9-s + 434.·11-s + 431.·12-s + 169·13-s + 176.·14-s − 334.·16-s + 424.·17-s − 2.53e3·18-s − 2.20e3·19-s + 1.24e3·21-s − 1.80e3·22-s + 1.17e3·23-s − 5.67e3·24-s − 701.·26-s − 1.07e4·27-s + 627.·28-s − 3.07e3·29-s + 6.24e3·31-s − 4.82e3·32-s − 1.26e4·33-s − 1.76e3·34-s + ⋯
L(s)  = 1  − 0.734·2-s − 1.87·3-s − 0.460·4-s + 1.37·6-s − 0.327·7-s + 1.07·8-s + 2.51·9-s + 1.08·11-s + 0.864·12-s + 0.277·13-s + 0.240·14-s − 0.326·16-s + 0.356·17-s − 1.84·18-s − 1.40·19-s + 0.614·21-s − 0.794·22-s + 0.463·23-s − 2.01·24-s − 0.203·26-s − 2.84·27-s + 0.151·28-s − 0.678·29-s + 1.16·31-s − 0.832·32-s − 2.02·33-s − 0.261·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(325\)    =    \(5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(52.1247\)
Root analytic conductor: \(7.21974\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 325,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.4782944625\)
\(L(\frac12)\) \(\approx\) \(0.4782944625\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
13 \( 1 - 169T \)
good2 \( 1 + 4.15T + 32T^{2} \)
3 \( 1 + 29.2T + 243T^{2} \)
7 \( 1 + 42.5T + 1.68e4T^{2} \)
11 \( 1 - 434.T + 1.61e5T^{2} \)
17 \( 1 - 424.T + 1.41e6T^{2} \)
19 \( 1 + 2.20e3T + 2.47e6T^{2} \)
23 \( 1 - 1.17e3T + 6.43e6T^{2} \)
29 \( 1 + 3.07e3T + 2.05e7T^{2} \)
31 \( 1 - 6.24e3T + 2.86e7T^{2} \)
37 \( 1 - 1.01e4T + 6.93e7T^{2} \)
41 \( 1 + 7.02e3T + 1.15e8T^{2} \)
43 \( 1 - 2.15e4T + 1.47e8T^{2} \)
47 \( 1 + 3.08e3T + 2.29e8T^{2} \)
53 \( 1 + 3.81e4T + 4.18e8T^{2} \)
59 \( 1 + 1.75e4T + 7.14e8T^{2} \)
61 \( 1 + 1.28e4T + 8.44e8T^{2} \)
67 \( 1 - 4.64e4T + 1.35e9T^{2} \)
71 \( 1 - 5.58e4T + 1.80e9T^{2} \)
73 \( 1 + 4.95e4T + 2.07e9T^{2} \)
79 \( 1 - 8.61e3T + 3.07e9T^{2} \)
83 \( 1 - 1.63e3T + 3.93e9T^{2} \)
89 \( 1 - 2.65e4T + 5.58e9T^{2} \)
97 \( 1 + 1.81e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.82090266398215546494364654965, −9.912427748856147049915997741165, −9.191066306066787366268832992116, −7.88620589004347573383806346323, −6.69034554632166940905699142458, −6.05905458760344052876356385412, −4.81043956800408024057518885081, −4.03169695043063648149652713051, −1.45201455924205559157608851914, −0.52474212714070350780990581765, 0.52474212714070350780990581765, 1.45201455924205559157608851914, 4.03169695043063648149652713051, 4.81043956800408024057518885081, 6.05905458760344052876356385412, 6.69034554632166940905699142458, 7.88620589004347573383806346323, 9.191066306066787366268832992116, 9.912427748856147049915997741165, 10.82090266398215546494364654965

Graph of the $Z$-function along the critical line