L(s) = 1 | − 2-s + 4-s + 5-s + 1.73·7-s − 8-s − 10-s − 1.73·13-s − 1.73·14-s + 16-s + 19-s + 20-s − 23-s + 25-s + 1.73·26-s + 1.73·28-s − 32-s + 1.73·35-s − 38-s − 40-s + 1.73·41-s + 46-s + 47-s + 1.99·49-s − 50-s − 1.73·52-s + 53-s − 1.73·56-s + ⋯ |
L(s) = 1 | − 2-s + 4-s + 5-s + 1.73·7-s − 8-s − 10-s − 1.73·13-s − 1.73·14-s + 16-s + 19-s + 20-s − 23-s + 25-s + 1.73·26-s + 1.73·28-s − 32-s + 1.73·35-s − 38-s − 40-s + 1.73·41-s + 46-s + 47-s + 1.99·49-s − 50-s − 1.73·52-s + 53-s − 1.73·56-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.156057578\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.156057578\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 \) |
| 5 | \( 1 - T \) |
good | 7 | \( 1 - 1.73T + T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + 1.73T + T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 - T + T^{2} \) |
| 23 | \( 1 + T + T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 - 1.73T + T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 - T + T^{2} \) |
| 53 | \( 1 - T + T^{2} \) |
| 59 | \( 1 + 1.73T + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.023133435735267180074635152507, −7.890029286948739667792957851102, −7.67849326775452767797140083068, −6.83242225115492755852226526122, −5.73557123231321272846006178503, −5.25536903506055819421618913054, −4.32749815004262421481440533971, −2.70217558363179904292694005913, −2.11926612017279930212291372171, −1.21051523781664732651206950632,
1.21051523781664732651206950632, 2.11926612017279930212291372171, 2.70217558363179904292694005913, 4.32749815004262421481440533971, 5.25536903506055819421618913054, 5.73557123231321272846006178503, 6.83242225115492755852226526122, 7.67849326775452767797140083068, 7.890029286948739667792957851102, 9.023133435735267180074635152507