Properties

Label 2-3240-40.19-c0-0-4
Degree $2$
Conductor $3240$
Sign $1$
Analytic cond. $1.61697$
Root an. cond. $1.27160$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s + 1.73·7-s − 8-s − 10-s − 1.73·13-s − 1.73·14-s + 16-s + 19-s + 20-s − 23-s + 25-s + 1.73·26-s + 1.73·28-s − 32-s + 1.73·35-s − 38-s − 40-s + 1.73·41-s + 46-s + 47-s + 1.99·49-s − 50-s − 1.73·52-s + 53-s − 1.73·56-s + ⋯
L(s)  = 1  − 2-s + 4-s + 5-s + 1.73·7-s − 8-s − 10-s − 1.73·13-s − 1.73·14-s + 16-s + 19-s + 20-s − 23-s + 25-s + 1.73·26-s + 1.73·28-s − 32-s + 1.73·35-s − 38-s − 40-s + 1.73·41-s + 46-s + 47-s + 1.99·49-s − 50-s − 1.73·52-s + 53-s − 1.73·56-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3240\)    =    \(2^{3} \cdot 3^{4} \cdot 5\)
Sign: $1$
Analytic conductor: \(1.61697\)
Root analytic conductor: \(1.27160\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3240} (1459, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3240,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.156057578\)
\(L(\frac12)\) \(\approx\) \(1.156057578\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 - 1.73T + T^{2} \)
11 \( 1 + T^{2} \)
13 \( 1 + 1.73T + T^{2} \)
17 \( 1 - T^{2} \)
19 \( 1 - T + T^{2} \)
23 \( 1 + T + T^{2} \)
29 \( 1 - T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 + T^{2} \)
41 \( 1 - 1.73T + T^{2} \)
43 \( 1 - T^{2} \)
47 \( 1 - T + T^{2} \)
53 \( 1 - T + T^{2} \)
59 \( 1 + 1.73T + T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 - T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 - T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 + T^{2} \)
97 \( 1 - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.023133435735267180074635152507, −7.890029286948739667792957851102, −7.67849326775452767797140083068, −6.83242225115492755852226526122, −5.73557123231321272846006178503, −5.25536903506055819421618913054, −4.32749815004262421481440533971, −2.70217558363179904292694005913, −2.11926612017279930212291372171, −1.21051523781664732651206950632, 1.21051523781664732651206950632, 2.11926612017279930212291372171, 2.70217558363179904292694005913, 4.32749815004262421481440533971, 5.25536903506055819421618913054, 5.73557123231321272846006178503, 6.83242225115492755852226526122, 7.67849326775452767797140083068, 7.890029286948739667792957851102, 9.023133435735267180074635152507

Graph of the $Z$-function along the critical line