| L(s) = 1 | + (0.965 − 0.258i)2-s + (0.866 − 0.499i)4-s + (0.965 + 0.258i)5-s + (−0.366 − 1.36i)7-s + (0.707 − 0.707i)8-s + 10-s + (−1.22 − 0.707i)11-s + (−0.707 − 1.22i)14-s + (0.500 − 0.866i)16-s + (0.965 − 0.258i)20-s + (−1.36 − 0.366i)22-s + (0.866 + 0.499i)25-s + (−0.999 − i)28-s + (−0.707 + 1.22i)29-s + (0.258 − 0.965i)32-s + ⋯ |
| L(s) = 1 | + (0.965 − 0.258i)2-s + (0.866 − 0.499i)4-s + (0.965 + 0.258i)5-s + (−0.366 − 1.36i)7-s + (0.707 − 0.707i)8-s + 10-s + (−1.22 − 0.707i)11-s + (−0.707 − 1.22i)14-s + (0.500 − 0.866i)16-s + (0.965 − 0.258i)20-s + (−1.36 − 0.366i)22-s + (0.866 + 0.499i)25-s + (−0.999 − i)28-s + (−0.707 + 1.22i)29-s + (0.258 − 0.965i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.313 + 0.949i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.313 + 0.949i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(2.492004059\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.492004059\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.965 + 0.258i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.965 - 0.258i)T \) |
| good | 7 | \( 1 + (0.366 + 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 11 | \( 1 + (1.22 + 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 17 | \( 1 - iT^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 29 | \( 1 + (0.707 - 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 47 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 + (-0.707 - 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (-1 - i)T + iT^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.517 - 1.93i)T + (-0.866 + 0.5i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.366 + 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.715627932279226063440270125090, −7.59604481464195046311521501819, −7.06652461968233570463027023588, −6.31988985650434796274683056495, −5.53982358293108620969233557391, −4.95793071709419393104068867564, −3.87611075978357566350587448312, −3.16804302920859564713553089084, −2.32238080484816056111243537569, −1.10704796953701191815317559396,
2.06263961668479388415381034662, 2.38580947842421631857438662720, 3.37795632696014827589804148908, 4.67907034754980612577591469854, 5.22093771520546541652741934447, 5.88447303804825415756475821098, 6.38292137359405815140463244759, 7.40210366590670408441488654405, 8.135701605588020097364400032070, 8.951212336139925638881089175893