Properties

Label 2-3240-1.1-c1-0-31
Degree $2$
Conductor $3240$
Sign $-1$
Analytic cond. $25.8715$
Root an. cond. $5.08640$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 2·7-s + 3·11-s − 2·17-s + 19-s − 2·23-s + 25-s + 3·29-s − 3·31-s + 2·35-s − 5·41-s − 4·43-s + 8·47-s − 3·49-s − 2·53-s − 3·55-s − 3·59-s + 6·61-s − 10·67-s + 15·71-s − 14·73-s − 6·77-s − 8·79-s + 2·85-s − 89-s − 95-s − 16·97-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.755·7-s + 0.904·11-s − 0.485·17-s + 0.229·19-s − 0.417·23-s + 1/5·25-s + 0.557·29-s − 0.538·31-s + 0.338·35-s − 0.780·41-s − 0.609·43-s + 1.16·47-s − 3/7·49-s − 0.274·53-s − 0.404·55-s − 0.390·59-s + 0.768·61-s − 1.22·67-s + 1.78·71-s − 1.63·73-s − 0.683·77-s − 0.900·79-s + 0.216·85-s − 0.105·89-s − 0.102·95-s − 1.62·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3240\)    =    \(2^{3} \cdot 3^{4} \cdot 5\)
Sign: $-1$
Analytic conductor: \(25.8715\)
Root analytic conductor: \(5.08640\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3240,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 - T + p T^{2} \)
23 \( 1 + 2 T + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 + 3 T + p T^{2} \)
37 \( 1 + p T^{2} \)
41 \( 1 + 5 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 + 3 T + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 + 10 T + p T^{2} \)
71 \( 1 - 15 T + p T^{2} \)
73 \( 1 + 14 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 + T + p T^{2} \)
97 \( 1 + 16 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.373144451675077111823016766462, −7.45527800657238257862866313400, −6.74512992177894309550576258587, −6.19244472846110384957077655120, −5.20870925292776089372449631208, −4.23030242668308709998880346697, −3.59637101529424453960177108255, −2.67882606004534936184693117968, −1.40921516626677664086056376863, 0, 1.40921516626677664086056376863, 2.67882606004534936184693117968, 3.59637101529424453960177108255, 4.23030242668308709998880346697, 5.20870925292776089372449631208, 6.19244472846110384957077655120, 6.74512992177894309550576258587, 7.45527800657238257862866313400, 8.373144451675077111823016766462

Graph of the $Z$-function along the critical line