Properties

Label 2-3240-1.1-c1-0-17
Degree $2$
Conductor $3240$
Sign $1$
Analytic cond. $25.8715$
Root an. cond. $5.08640$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 5·11-s − 3·17-s + 5·19-s − 6·23-s + 25-s + 10·29-s − 2·31-s + 4·37-s + 3·41-s + 3·43-s − 4·47-s − 7·49-s + 6·53-s + 5·55-s + 3·59-s + 2·61-s − 11·67-s + 14·71-s − 15·73-s + 10·79-s + 12·83-s − 3·85-s − 14·89-s + 5·95-s − 13·97-s + 12·101-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.50·11-s − 0.727·17-s + 1.14·19-s − 1.25·23-s + 1/5·25-s + 1.85·29-s − 0.359·31-s + 0.657·37-s + 0.468·41-s + 0.457·43-s − 0.583·47-s − 49-s + 0.824·53-s + 0.674·55-s + 0.390·59-s + 0.256·61-s − 1.34·67-s + 1.66·71-s − 1.75·73-s + 1.12·79-s + 1.31·83-s − 0.325·85-s − 1.48·89-s + 0.512·95-s − 1.31·97-s + 1.19·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3240\)    =    \(2^{3} \cdot 3^{4} \cdot 5\)
Sign: $1$
Analytic conductor: \(25.8715\)
Root analytic conductor: \(5.08640\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3240,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.294962796\)
\(L(\frac12)\) \(\approx\) \(2.294962796\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 + p T^{2} \)
11 \( 1 - 5 T + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 - 5 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 - 10 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 - 3 T + p T^{2} \)
43 \( 1 - 3 T + p T^{2} \)
47 \( 1 + 4 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 3 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 + 11 T + p T^{2} \)
71 \( 1 - 14 T + p T^{2} \)
73 \( 1 + 15 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + 14 T + p T^{2} \)
97 \( 1 + 13 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.721986862372531466472811439682, −7.978200054339079524025434372864, −7.01473875379533385520716772330, −6.40472777915298073926030895749, −5.77374847167872842672541376014, −4.71844238354751501924695230175, −4.02581030722532199561603893552, −3.04958657678263978554504940068, −1.97229666763931659198908570606, −0.959453154224763848219262354022, 0.959453154224763848219262354022, 1.97229666763931659198908570606, 3.04958657678263978554504940068, 4.02581030722532199561603893552, 4.71844238354751501924695230175, 5.77374847167872842672541376014, 6.40472777915298073926030895749, 7.01473875379533385520716772330, 7.978200054339079524025434372864, 8.721986862372531466472811439682

Graph of the $Z$-function along the critical line