Properties

Label 2-3240-1.1-c1-0-1
Degree $2$
Conductor $3240$
Sign $1$
Analytic cond. $25.8715$
Root an. cond. $5.08640$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 3.27·7-s − 6.27·11-s − 1.27·13-s − 2·17-s + 19-s + 7.27·23-s + 25-s − 6.27·29-s + 6.27·31-s + 3.27·35-s − 10.5·37-s − 7.54·41-s + 4·43-s + 1.27·47-s + 3.72·49-s − 0.725·53-s + 6.27·55-s + 13·59-s + 8.54·61-s + 1.27·65-s + 0.549·67-s + 8.27·71-s + 15.0·73-s + 20.5·77-s + 10.5·79-s + 2.54·83-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.23·7-s − 1.89·11-s − 0.353·13-s − 0.485·17-s + 0.229·19-s + 1.51·23-s + 0.200·25-s − 1.16·29-s + 1.12·31-s + 0.553·35-s − 1.73·37-s − 1.17·41-s + 0.609·43-s + 0.185·47-s + 0.532·49-s − 0.0995·53-s + 0.846·55-s + 1.69·59-s + 1.09·61-s + 0.158·65-s + 0.0671·67-s + 0.982·71-s + 1.76·73-s + 2.34·77-s + 1.18·79-s + 0.279·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3240\)    =    \(2^{3} \cdot 3^{4} \cdot 5\)
Sign: $1$
Analytic conductor: \(25.8715\)
Root analytic conductor: \(5.08640\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3240,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7653886278\)
\(L(\frac12)\) \(\approx\) \(0.7653886278\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
good7 \( 1 + 3.27T + 7T^{2} \)
11 \( 1 + 6.27T + 11T^{2} \)
13 \( 1 + 1.27T + 13T^{2} \)
17 \( 1 + 2T + 17T^{2} \)
19 \( 1 - T + 19T^{2} \)
23 \( 1 - 7.27T + 23T^{2} \)
29 \( 1 + 6.27T + 29T^{2} \)
31 \( 1 - 6.27T + 31T^{2} \)
37 \( 1 + 10.5T + 37T^{2} \)
41 \( 1 + 7.54T + 41T^{2} \)
43 \( 1 - 4T + 43T^{2} \)
47 \( 1 - 1.27T + 47T^{2} \)
53 \( 1 + 0.725T + 53T^{2} \)
59 \( 1 - 13T + 59T^{2} \)
61 \( 1 - 8.54T + 61T^{2} \)
67 \( 1 - 0.549T + 67T^{2} \)
71 \( 1 - 8.27T + 71T^{2} \)
73 \( 1 - 15.0T + 73T^{2} \)
79 \( 1 - 10.5T + 79T^{2} \)
83 \( 1 - 2.54T + 83T^{2} \)
89 \( 1 + 12.8T + 89T^{2} \)
97 \( 1 - 16T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.597384557843943529786813673015, −7.913217828865460142882300000029, −7.05960089397053320680793935301, −6.64423680773547303557952435588, −5.37557109151116806806331633957, −5.06188546021354026268271835300, −3.78457887691571518364894280035, −3.04534604546798916282346167792, −2.30453229299001038824384109961, −0.49072456649946162630146174236, 0.49072456649946162630146174236, 2.30453229299001038824384109961, 3.04534604546798916282346167792, 3.78457887691571518364894280035, 5.06188546021354026268271835300, 5.37557109151116806806331633957, 6.64423680773547303557952435588, 7.05960089397053320680793935301, 7.913217828865460142882300000029, 8.597384557843943529786813673015

Graph of the $Z$-function along the critical line