Properties

Label 2-323400-1.1-c1-0-106
Degree $2$
Conductor $323400$
Sign $1$
Analytic cond. $2582.36$
Root an. cond. $50.8169$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 9-s − 11-s + 2·13-s + 6·17-s + 27-s − 2·29-s − 33-s + 2·37-s + 2·39-s + 6·41-s + 4·43-s + 8·47-s + 6·51-s + 6·53-s − 10·61-s − 8·67-s + 16·71-s − 10·73-s + 8·79-s + 81-s + 12·83-s − 2·87-s + 10·89-s − 10·97-s − 99-s + 101-s + ⋯
L(s)  = 1  + 0.577·3-s + 1/3·9-s − 0.301·11-s + 0.554·13-s + 1.45·17-s + 0.192·27-s − 0.371·29-s − 0.174·33-s + 0.328·37-s + 0.320·39-s + 0.937·41-s + 0.609·43-s + 1.16·47-s + 0.840·51-s + 0.824·53-s − 1.28·61-s − 0.977·67-s + 1.89·71-s − 1.17·73-s + 0.900·79-s + 1/9·81-s + 1.31·83-s − 0.214·87-s + 1.05·89-s − 1.01·97-s − 0.100·99-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 323400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 323400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(323400\)    =    \(2^{3} \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(2582.36\)
Root analytic conductor: \(50.8169\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 323400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.490180750\)
\(L(\frac12)\) \(\approx\) \(4.490180750\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
good13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 - 16 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.51317978797883, −12.21386590371659, −11.91036150507344, −11.04447622743681, −10.84485695161125, −10.36588030852816, −9.783991466622322, −9.431461103413649, −8.966507671920514, −8.487324502027448, −7.949358291258143, −7.545961928376250, −7.301590213029911, −6.519592395313670, −5.994993213470921, −5.637298793401184, −5.070738930965316, −4.460250785850938, −3.886535840482065, −3.507811411321524, −2.902396971534078, −2.430939820991115, −1.771120680144535, −1.089330381928203, −0.5935587313668583, 0.5935587313668583, 1.089330381928203, 1.771120680144535, 2.430939820991115, 2.902396971534078, 3.507811411321524, 3.886535840482065, 4.460250785850938, 5.070738930965316, 5.637298793401184, 5.994993213470921, 6.519592395313670, 7.301590213029911, 7.545961928376250, 7.949358291258143, 8.487324502027448, 8.966507671920514, 9.431461103413649, 9.783991466622322, 10.36588030852816, 10.84485695161125, 11.04447622743681, 11.91036150507344, 12.21386590371659, 12.51317978797883

Graph of the $Z$-function along the critical line