L(s) = 1 | + 2-s + 3-s + 4-s − 2·5-s + 6-s + 8-s + 9-s − 2·10-s − 11-s + 12-s − 5.41·13-s − 2·15-s + 16-s − 2·17-s + 18-s + 2.24·19-s − 2·20-s − 22-s − 4.82·23-s + 24-s − 25-s − 5.41·26-s + 27-s + 9.65·29-s − 2·30-s − 6.24·31-s + 32-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 0.5·4-s − 0.894·5-s + 0.408·6-s + 0.353·8-s + 0.333·9-s − 0.632·10-s − 0.301·11-s + 0.288·12-s − 1.50·13-s − 0.516·15-s + 0.250·16-s − 0.485·17-s + 0.235·18-s + 0.514·19-s − 0.447·20-s − 0.213·22-s − 1.00·23-s + 0.204·24-s − 0.200·25-s − 1.06·26-s + 0.192·27-s + 1.79·29-s − 0.365·30-s − 1.12·31-s + 0.176·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 - T \) |
| 7 | \( 1 \) |
| 11 | \( 1 + T \) |
good | 5 | \( 1 + 2T + 5T^{2} \) |
| 13 | \( 1 + 5.41T + 13T^{2} \) |
| 17 | \( 1 + 2T + 17T^{2} \) |
| 19 | \( 1 - 2.24T + 19T^{2} \) |
| 23 | \( 1 + 4.82T + 23T^{2} \) |
| 29 | \( 1 - 9.65T + 29T^{2} \) |
| 31 | \( 1 + 6.24T + 31T^{2} \) |
| 37 | \( 1 - 0.828T + 37T^{2} \) |
| 41 | \( 1 + 11.6T + 41T^{2} \) |
| 43 | \( 1 + 4.82T + 43T^{2} \) |
| 47 | \( 1 - 7.89T + 47T^{2} \) |
| 53 | \( 1 + 10.4T + 53T^{2} \) |
| 59 | \( 1 + 6.82T + 59T^{2} \) |
| 61 | \( 1 + 2.58T + 61T^{2} \) |
| 67 | \( 1 + 1.17T + 67T^{2} \) |
| 71 | \( 1 - 5.65T + 71T^{2} \) |
| 73 | \( 1 + 11.6T + 73T^{2} \) |
| 79 | \( 1 + 16.4T + 79T^{2} \) |
| 83 | \( 1 + 5.07T + 83T^{2} \) |
| 89 | \( 1 + 3.75T + 89T^{2} \) |
| 97 | \( 1 - 9.89T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.110407111554353029958013414770, −7.48923712658985638355101404706, −6.96979435446342505166150288670, −5.97029620436706895677716997473, −4.90445677016367894451661047716, −4.45573715805451005124604622301, −3.49416632644068465664898719074, −2.78602905574946369160953807154, −1.82051508499627481912207664278, 0,
1.82051508499627481912207664278, 2.78602905574946369160953807154, 3.49416632644068465664898719074, 4.45573715805451005124604622301, 4.90445677016367894451661047716, 5.97029620436706895677716997473, 6.96979435446342505166150288670, 7.48923712658985638355101404706, 8.110407111554353029958013414770