L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.937 + 1.62i)3-s + (−0.499 + 0.866i)4-s + (0.603 + 1.04i)5-s − 1.87·6-s + (2.64 + 0.0264i)7-s − 0.999·8-s + (−0.258 − 0.447i)9-s + (−0.603 + 1.04i)10-s + (−1.40 + 2.43i)11-s + (−0.937 − 1.62i)12-s − 1.15·13-s + (1.29 + 2.30i)14-s − 2.26·15-s + (−0.5 − 0.866i)16-s + (−0.896 + 1.55i)17-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (−0.541 + 0.937i)3-s + (−0.249 + 0.433i)4-s + (0.270 + 0.467i)5-s − 0.765·6-s + (0.999 + 0.0100i)7-s − 0.353·8-s + (−0.0860 − 0.149i)9-s + (−0.191 + 0.330i)10-s + (−0.423 + 0.733i)11-s + (−0.270 − 0.468i)12-s − 0.319·13-s + (0.347 + 0.615i)14-s − 0.584·15-s + (−0.125 − 0.216i)16-s + (−0.217 + 0.376i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 322 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.827 - 0.562i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 322 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.827 - 0.562i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.399424 + 1.29818i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.399424 + 1.29818i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 + (-2.64 - 0.0264i)T \) |
| 23 | \( 1 + (0.5 + 0.866i)T \) |
good | 3 | \( 1 + (0.937 - 1.62i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-0.603 - 1.04i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (1.40 - 2.43i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 1.15T + 13T^{2} \) |
| 17 | \( 1 + (0.896 - 1.55i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.20 + 5.54i)T + (-9.5 + 16.4i)T^{2} \) |
| 29 | \( 1 - 6.14T + 29T^{2} \) |
| 31 | \( 1 + (1.52 - 2.64i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-4.19 - 7.27i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 5.26T + 41T^{2} \) |
| 43 | \( 1 - 7.14T + 43T^{2} \) |
| 47 | \( 1 + (-2.73 - 4.73i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.75 + 4.76i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (5.61 - 9.72i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.53 + 4.38i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.31 - 4.00i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 7.31T + 71T^{2} \) |
| 73 | \( 1 + (-5.33 + 9.24i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (7.69 + 13.3i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 2.94T + 83T^{2} \) |
| 89 | \( 1 + (3.45 + 5.98i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 5.25T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.92234404875755569334765140811, −10.85040870533781771296533314174, −10.39389913426221626477356205188, −9.224392958275366025217069964625, −8.111769061156134148091312163249, −7.08745005227766818731958071981, −5.99911076380507698850324888543, −4.73578502500176130592504879099, −4.49644037192754578681410660952, −2.51725599359964399866706738260,
1.00106522908241647565033960675, 2.26223143565447754276384065967, 4.10063005290357042320431578008, 5.34585765510180392595462489228, 6.06480079970881564887282394692, 7.41501177129990891773657063091, 8.354053118494925464906479763105, 9.454281465780600179466135706275, 10.71569201848239893527457398252, 11.34247041750678353258736271083