Properties

Label 2-322-161.100-c1-0-2
Degree $2$
Conductor $322$
Sign $-0.278 - 0.960i$
Analytic cond. $2.57118$
Root an. cond. $1.60349$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.786 − 0.618i)2-s + (−1.20 + 1.69i)3-s + (0.235 + 0.971i)4-s + (−0.434 + 0.0836i)5-s + (1.99 − 0.586i)6-s + (2.62 + 0.297i)7-s + (0.415 − 0.909i)8-s + (−0.438 − 1.26i)9-s + (0.393 + 0.202i)10-s + (1.43 − 1.13i)11-s + (−1.93 − 0.774i)12-s + (−5.14 + 3.30i)13-s + (−1.88 − 1.85i)14-s + (0.382 − 0.838i)15-s + (−0.888 + 0.458i)16-s + (2.17 + 2.07i)17-s + ⋯
L(s)  = 1  + (−0.555 − 0.437i)2-s + (−0.697 + 0.979i)3-s + (0.117 + 0.485i)4-s + (−0.194 + 0.0374i)5-s + (0.816 − 0.239i)6-s + (0.993 + 0.112i)7-s + (0.146 − 0.321i)8-s + (−0.146 − 0.422i)9-s + (0.124 + 0.0640i)10-s + (0.433 − 0.341i)11-s + (−0.558 − 0.223i)12-s + (−1.42 + 0.917i)13-s + (−0.503 − 0.496i)14-s + (0.0988 − 0.216i)15-s + (−0.222 + 0.114i)16-s + (0.528 + 0.503i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 322 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.278 - 0.960i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 322 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.278 - 0.960i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(322\)    =    \(2 \cdot 7 \cdot 23\)
Sign: $-0.278 - 0.960i$
Analytic conductor: \(2.57118\)
Root analytic conductor: \(1.60349\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{322} (261, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 322,\ (\ :1/2),\ -0.278 - 0.960i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.398792 + 0.530800i\)
\(L(\frac12)\) \(\approx\) \(0.398792 + 0.530800i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.786 + 0.618i)T \)
7 \( 1 + (-2.62 - 0.297i)T \)
23 \( 1 + (0.185 - 4.79i)T \)
good3 \( 1 + (1.20 - 1.69i)T + (-0.981 - 2.83i)T^{2} \)
5 \( 1 + (0.434 - 0.0836i)T + (4.64 - 1.85i)T^{2} \)
11 \( 1 + (-1.43 + 1.13i)T + (2.59 - 10.6i)T^{2} \)
13 \( 1 + (5.14 - 3.30i)T + (5.40 - 11.8i)T^{2} \)
17 \( 1 + (-2.17 - 2.07i)T + (0.808 + 16.9i)T^{2} \)
19 \( 1 + (3.28 - 3.12i)T + (0.904 - 18.9i)T^{2} \)
29 \( 1 + (-5.02 + 1.47i)T + (24.3 - 15.6i)T^{2} \)
31 \( 1 + (4.34 - 0.415i)T + (30.4 - 5.86i)T^{2} \)
37 \( 1 + (-1.87 - 5.42i)T + (-29.0 + 22.8i)T^{2} \)
41 \( 1 + (-0.691 - 0.798i)T + (-5.83 + 40.5i)T^{2} \)
43 \( 1 + (1.17 + 2.58i)T + (-28.1 + 32.4i)T^{2} \)
47 \( 1 + (-4.73 + 8.19i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (0.413 - 8.69i)T + (-52.7 - 5.03i)T^{2} \)
59 \( 1 + (4.04 + 2.08i)T + (34.2 + 48.0i)T^{2} \)
61 \( 1 + (-3.67 - 5.15i)T + (-19.9 + 57.6i)T^{2} \)
67 \( 1 + (-5.77 + 2.31i)T + (48.4 - 46.2i)T^{2} \)
71 \( 1 + (-0.992 + 6.90i)T + (-68.1 - 20.0i)T^{2} \)
73 \( 1 + (-2.18 - 9.01i)T + (-64.8 + 33.4i)T^{2} \)
79 \( 1 + (0.738 + 15.4i)T + (-78.6 + 7.50i)T^{2} \)
83 \( 1 + (6.05 - 6.98i)T + (-11.8 - 82.1i)T^{2} \)
89 \( 1 + (-11.5 - 1.10i)T + (87.3 + 16.8i)T^{2} \)
97 \( 1 + (-2.48 - 2.87i)T + (-13.8 + 96.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.76633086138363822965091729946, −10.92661008633282967097910074039, −10.12041093397429084399241211622, −9.379741240183005202026415858753, −8.252263294428800895330435541794, −7.31778795182492803945394223685, −5.81359139258596279880865715845, −4.71382197596615854238221953489, −3.83311461998334599799604067212, −1.90356205717438278296898512735, 0.62283545552422778513449272047, 2.22375586122036465257557292706, 4.58027470056095769581877635847, 5.57291038241009708838266604295, 6.73851236779914460113456514120, 7.47686832866592517790983028172, 8.170718632450148296480113212438, 9.432899133424135893182987334714, 10.49196135645599224550596187380, 11.41447229323990586249230131382

Graph of the $Z$-function along the critical line