Properties

Label 2-322-1.1-c3-0-8
Degree $2$
Conductor $322$
Sign $1$
Analytic cond. $18.9986$
Root an. cond. $4.35874$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2.24·3-s + 4·4-s + 3.75·5-s − 4.48·6-s + 7·7-s − 8·8-s − 21.9·9-s − 7.51·10-s + 13.0·11-s + 8.97·12-s + 33.1·13-s − 14·14-s + 8.42·15-s + 16·16-s + 89.4·17-s + 43.9·18-s + 14.2·19-s + 15.0·20-s + 15.6·21-s − 26.0·22-s + 23·23-s − 17.9·24-s − 110.·25-s − 66.3·26-s − 109.·27-s + 28·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.431·3-s + 0.5·4-s + 0.336·5-s − 0.305·6-s + 0.377·7-s − 0.353·8-s − 0.813·9-s − 0.237·10-s + 0.357·11-s + 0.215·12-s + 0.707·13-s − 0.267·14-s + 0.145·15-s + 0.250·16-s + 1.27·17-s + 0.575·18-s + 0.172·19-s + 0.168·20-s + 0.163·21-s − 0.252·22-s + 0.208·23-s − 0.152·24-s − 0.887·25-s − 0.500·26-s − 0.782·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 322 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 322 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(322\)    =    \(2 \cdot 7 \cdot 23\)
Sign: $1$
Analytic conductor: \(18.9986\)
Root analytic conductor: \(4.35874\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 322,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.740661745\)
\(L(\frac12)\) \(\approx\) \(1.740661745\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
7 \( 1 - 7T \)
23 \( 1 - 23T \)
good3 \( 1 - 2.24T + 27T^{2} \)
5 \( 1 - 3.75T + 125T^{2} \)
11 \( 1 - 13.0T + 1.33e3T^{2} \)
13 \( 1 - 33.1T + 2.19e3T^{2} \)
17 \( 1 - 89.4T + 4.91e3T^{2} \)
19 \( 1 - 14.2T + 6.85e3T^{2} \)
29 \( 1 + 54.5T + 2.43e4T^{2} \)
31 \( 1 - 217.T + 2.97e4T^{2} \)
37 \( 1 - 190.T + 5.06e4T^{2} \)
41 \( 1 - 483.T + 6.89e4T^{2} \)
43 \( 1 + 141.T + 7.95e4T^{2} \)
47 \( 1 + 187.T + 1.03e5T^{2} \)
53 \( 1 - 13.1T + 1.48e5T^{2} \)
59 \( 1 - 828.T + 2.05e5T^{2} \)
61 \( 1 - 37.6T + 2.26e5T^{2} \)
67 \( 1 - 458.T + 3.00e5T^{2} \)
71 \( 1 - 901.T + 3.57e5T^{2} \)
73 \( 1 - 665.T + 3.89e5T^{2} \)
79 \( 1 + 1.18e3T + 4.93e5T^{2} \)
83 \( 1 + 607.T + 5.71e5T^{2} \)
89 \( 1 - 1.54e3T + 7.04e5T^{2} \)
97 \( 1 + 408.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.22077256850222500313253441240, −10.04578775704369572985349314137, −9.313442446782904712633046982990, −8.335973195525579467215192594754, −7.72886955317842906659314305809, −6.34019471911824233745200288656, −5.45648902685570004825461089970, −3.72358631082298948792625414064, −2.46877059371812213422019822772, −1.03910138892323503018295935155, 1.03910138892323503018295935155, 2.46877059371812213422019822772, 3.72358631082298948792625414064, 5.45648902685570004825461089970, 6.34019471911824233745200288656, 7.72886955317842906659314305809, 8.335973195525579467215192594754, 9.313442446782904712633046982990, 10.04578775704369572985349314137, 11.22077256850222500313253441240

Graph of the $Z$-function along the critical line