Properties

Label 2-322-1.1-c3-0-22
Degree $2$
Conductor $322$
Sign $-1$
Analytic cond. $18.9986$
Root an. cond. $4.35874$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 0.791·3-s + 4·4-s + 1.75·5-s − 1.58·6-s + 7·7-s − 8·8-s − 26.3·9-s − 3.51·10-s + 30.9·11-s + 3.16·12-s − 52.8·13-s − 14·14-s + 1.39·15-s + 16·16-s − 121.·17-s + 52.7·18-s + 134.·19-s + 7.03·20-s + 5.54·21-s − 61.9·22-s − 23·23-s − 6.33·24-s − 121.·25-s + 105.·26-s − 42.2·27-s + 28·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.152·3-s + 0.5·4-s + 0.157·5-s − 0.107·6-s + 0.377·7-s − 0.353·8-s − 0.976·9-s − 0.111·10-s + 0.848·11-s + 0.0761·12-s − 1.12·13-s − 0.267·14-s + 0.0239·15-s + 0.250·16-s − 1.73·17-s + 0.690·18-s + 1.62·19-s + 0.0786·20-s + 0.0575·21-s − 0.599·22-s − 0.208·23-s − 0.0538·24-s − 0.975·25-s + 0.797·26-s − 0.301·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 322 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 322 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(322\)    =    \(2 \cdot 7 \cdot 23\)
Sign: $-1$
Analytic conductor: \(18.9986\)
Root analytic conductor: \(4.35874\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 322,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
7 \( 1 - 7T \)
23 \( 1 + 23T \)
good3 \( 1 - 0.791T + 27T^{2} \)
5 \( 1 - 1.75T + 125T^{2} \)
11 \( 1 - 30.9T + 1.33e3T^{2} \)
13 \( 1 + 52.8T + 2.19e3T^{2} \)
17 \( 1 + 121.T + 4.91e3T^{2} \)
19 \( 1 - 134.T + 6.85e3T^{2} \)
29 \( 1 - 36.9T + 2.43e4T^{2} \)
31 \( 1 - 103.T + 2.97e4T^{2} \)
37 \( 1 + 386.T + 5.06e4T^{2} \)
41 \( 1 - 19.6T + 6.89e4T^{2} \)
43 \( 1 - 125.T + 7.95e4T^{2} \)
47 \( 1 + 181.T + 1.03e5T^{2} \)
53 \( 1 + 304.T + 1.48e5T^{2} \)
59 \( 1 + 715.T + 2.05e5T^{2} \)
61 \( 1 + 737.T + 2.26e5T^{2} \)
67 \( 1 + 732.T + 3.00e5T^{2} \)
71 \( 1 + 182.T + 3.57e5T^{2} \)
73 \( 1 - 53.2T + 3.89e5T^{2} \)
79 \( 1 - 242.T + 4.93e5T^{2} \)
83 \( 1 + 896.T + 5.71e5T^{2} \)
89 \( 1 - 229.T + 7.04e5T^{2} \)
97 \( 1 - 197.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.70953467176935239721855008364, −9.546394182203310603565112874041, −8.990956512150100131037670089489, −7.962856101907618813340521377076, −7.01399546776554016804806687421, −5.92471413427961390885876460161, −4.67293851968786216673760984665, −3.04716099653795769272071637181, −1.79485228194279366197250753080, 0, 1.79485228194279366197250753080, 3.04716099653795769272071637181, 4.67293851968786216673760984665, 5.92471413427961390885876460161, 7.01399546776554016804806687421, 7.962856101907618813340521377076, 8.990956512150100131037670089489, 9.546394182203310603565112874041, 10.70953467176935239721855008364

Graph of the $Z$-function along the critical line