L(s) = 1 | − 2.23·3-s + 2.82i·7-s + 2.00·9-s − 2.23i·11-s − 6.32·13-s − 5i·17-s − 2.23i·19-s − 6.32i·21-s + 5.65i·23-s + 2.23·27-s − 6.32i·29-s + 5.00i·33-s + 6.32·37-s + 14.1·39-s + 3·41-s + ⋯ |
L(s) = 1 | − 1.29·3-s + 1.06i·7-s + 0.666·9-s − 0.674i·11-s − 1.75·13-s − 1.21i·17-s − 0.512i·19-s − 1.38i·21-s + 1.17i·23-s + 0.430·27-s − 1.17i·29-s + 0.870i·33-s + 1.03·37-s + 2.26·39-s + 0.468·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6362760192\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6362760192\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + 2.23T + 3T^{2} \) |
| 7 | \( 1 - 2.82iT - 7T^{2} \) |
| 11 | \( 1 + 2.23iT - 11T^{2} \) |
| 13 | \( 1 + 6.32T + 13T^{2} \) |
| 17 | \( 1 + 5iT - 17T^{2} \) |
| 19 | \( 1 + 2.23iT - 19T^{2} \) |
| 23 | \( 1 - 5.65iT - 23T^{2} \) |
| 29 | \( 1 + 6.32iT - 29T^{2} \) |
| 31 | \( 1 + 31T^{2} \) |
| 37 | \( 1 - 6.32T + 37T^{2} \) |
| 41 | \( 1 - 3T + 41T^{2} \) |
| 43 | \( 1 - 8.94T + 43T^{2} \) |
| 47 | \( 1 - 2.82iT - 47T^{2} \) |
| 53 | \( 1 + 12.6T + 53T^{2} \) |
| 59 | \( 1 - 8.94iT - 59T^{2} \) |
| 61 | \( 1 + 6.32iT - 61T^{2} \) |
| 67 | \( 1 + 11.1T + 67T^{2} \) |
| 71 | \( 1 + 14.1T + 71T^{2} \) |
| 73 | \( 1 + 15iT - 73T^{2} \) |
| 79 | \( 1 - 14.1T + 79T^{2} \) |
| 83 | \( 1 + 6.70T + 83T^{2} \) |
| 89 | \( 1 + T + 89T^{2} \) |
| 97 | \( 1 - 10iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.164682270507401831741271956473, −7.77526052302832037500498520258, −7.36404333651414282818571525407, −6.21774970982900809527807989284, −5.83704132985375205997116213277, −5.02742749764096663069953405896, −4.56623238752684872723638007069, −3.00894460282619592593678535657, −2.33440120821207507857513306277, −0.70516200040660348069073472688,
0.36406028847228352297394652487, 1.60966168125923872046140163629, 2.85842460885069053354522728851, 4.29264343856643013661026065421, 4.54821711831870523265548632201, 5.52005721384635720018472587283, 6.26052540772479174785004494437, 7.04716087456950582745593103219, 7.49919806320799352825259882459, 8.424388070197217604442950781230