Properties

Label 2-3200-40.13-c0-0-7
Degree $2$
Conductor $3200$
Sign $0.973 + 0.229i$
Analytic cond. $1.59700$
Root an. cond. $1.26372$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.41 − 1.41i)7-s + i·9-s + (1.41 + 1.41i)23-s − 2·41-s + (1.41 − 1.41i)47-s − 3.00i·49-s + (1.41 + 1.41i)63-s − 81-s + 2i·89-s + (−1.41 − 1.41i)103-s + ⋯
L(s)  = 1  + (1.41 − 1.41i)7-s + i·9-s + (1.41 + 1.41i)23-s − 2·41-s + (1.41 − 1.41i)47-s − 3.00i·49-s + (1.41 + 1.41i)63-s − 81-s + 2i·89-s + (−1.41 − 1.41i)103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 + 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 + 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3200\)    =    \(2^{7} \cdot 5^{2}\)
Sign: $0.973 + 0.229i$
Analytic conductor: \(1.59700\)
Root analytic conductor: \(1.26372\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3200} (193, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3200,\ (\ :0),\ 0.973 + 0.229i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.517383382\)
\(L(\frac12)\) \(\approx\) \(1.517383382\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - iT^{2} \)
7 \( 1 + (-1.41 + 1.41i)T - iT^{2} \)
11 \( 1 - T^{2} \)
13 \( 1 - iT^{2} \)
17 \( 1 - iT^{2} \)
19 \( 1 + T^{2} \)
23 \( 1 + (-1.41 - 1.41i)T + iT^{2} \)
29 \( 1 + T^{2} \)
31 \( 1 + T^{2} \)
37 \( 1 + iT^{2} \)
41 \( 1 + 2T + T^{2} \)
43 \( 1 - iT^{2} \)
47 \( 1 + (-1.41 + 1.41i)T - iT^{2} \)
53 \( 1 - iT^{2} \)
59 \( 1 + T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 + iT^{2} \)
71 \( 1 + T^{2} \)
73 \( 1 + iT^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 - iT^{2} \)
89 \( 1 - 2iT - T^{2} \)
97 \( 1 - iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.558521724688104867953923222011, −8.079097557460132601720875935582, −7.23206686480450800070882513957, −7.00618205700576076060867588322, −5.45490015785996835775925748502, −5.03045363450171316178310636004, −4.24170447864360398614841771417, −3.37693534274857280233526153234, −2.02394635151992678945856159291, −1.19846593088660010545087102603, 1.25049665581412941974710719706, 2.34654076833839008292226682875, 3.15620969394984185239991623342, 4.41164773945431332497170434520, 5.02880261823992864665981694581, 5.81497657749248190330483104458, 6.54937887168368387607143260012, 7.42634106389067589965179415152, 8.386609224501681794404328553973, 8.781184462414268596988684930658

Graph of the $Z$-function along the critical line