Properties

Label 2-3200-200.179-c0-0-0
Degree $2$
Conductor $3200$
Sign $-0.535 - 0.844i$
Analytic cond. $1.59700$
Root an. cond. $1.26372$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.809 + 0.587i)5-s + (0.309 + 0.951i)9-s + (0.5 + 1.53i)13-s + (−1.11 − 1.53i)17-s + (0.309 − 0.951i)25-s + (−1.11 + 1.53i)29-s + (0.190 + 0.587i)37-s + (0.5 + 1.53i)41-s + (−0.809 − 0.587i)45-s − 49-s + (−1.30 − 0.951i)53-s + (−1.11 − 0.363i)61-s + (−1.30 − 0.951i)65-s + (1.11 + 0.363i)73-s + (−0.809 + 0.587i)81-s + ⋯
L(s)  = 1  + (−0.809 + 0.587i)5-s + (0.309 + 0.951i)9-s + (0.5 + 1.53i)13-s + (−1.11 − 1.53i)17-s + (0.309 − 0.951i)25-s + (−1.11 + 1.53i)29-s + (0.190 + 0.587i)37-s + (0.5 + 1.53i)41-s + (−0.809 − 0.587i)45-s − 49-s + (−1.30 − 0.951i)53-s + (−1.11 − 0.363i)61-s + (−1.30 − 0.951i)65-s + (1.11 + 0.363i)73-s + (−0.809 + 0.587i)81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.535 - 0.844i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.535 - 0.844i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3200\)    =    \(2^{7} \cdot 5^{2}\)
Sign: $-0.535 - 0.844i$
Analytic conductor: \(1.59700\)
Root analytic conductor: \(1.26372\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3200} (2879, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3200,\ (\ :0),\ -0.535 - 0.844i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.7805446435\)
\(L(\frac12)\) \(\approx\) \(0.7805446435\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (0.809 - 0.587i)T \)
good3 \( 1 + (-0.309 - 0.951i)T^{2} \)
7 \( 1 + T^{2} \)
11 \( 1 + (-0.809 - 0.587i)T^{2} \)
13 \( 1 + (-0.5 - 1.53i)T + (-0.809 + 0.587i)T^{2} \)
17 \( 1 + (1.11 + 1.53i)T + (-0.309 + 0.951i)T^{2} \)
19 \( 1 + (0.309 - 0.951i)T^{2} \)
23 \( 1 + (-0.809 - 0.587i)T^{2} \)
29 \( 1 + (1.11 - 1.53i)T + (-0.309 - 0.951i)T^{2} \)
31 \( 1 + (-0.309 + 0.951i)T^{2} \)
37 \( 1 + (-0.190 - 0.587i)T + (-0.809 + 0.587i)T^{2} \)
41 \( 1 + (-0.5 - 1.53i)T + (-0.809 + 0.587i)T^{2} \)
43 \( 1 - T^{2} \)
47 \( 1 + (0.309 + 0.951i)T^{2} \)
53 \( 1 + (1.30 + 0.951i)T + (0.309 + 0.951i)T^{2} \)
59 \( 1 + (-0.809 + 0.587i)T^{2} \)
61 \( 1 + (1.11 + 0.363i)T + (0.809 + 0.587i)T^{2} \)
67 \( 1 + (-0.309 + 0.951i)T^{2} \)
71 \( 1 + (-0.309 - 0.951i)T^{2} \)
73 \( 1 + (-1.11 - 0.363i)T + (0.809 + 0.587i)T^{2} \)
79 \( 1 + (-0.309 - 0.951i)T^{2} \)
83 \( 1 + (-0.309 + 0.951i)T^{2} \)
89 \( 1 + (0.190 - 0.587i)T + (-0.809 - 0.587i)T^{2} \)
97 \( 1 + (1.11 - 1.53i)T + (-0.309 - 0.951i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.147200092802387740304888210730, −8.260576487814077029362469467109, −7.55192973477971436300001215294, −6.86168239651158523415909169088, −6.41693086560195444149693982333, −4.96704805545548452962532032260, −4.58167232460276288284455352005, −3.61135086686313717219857214790, −2.65872644772428954045324928006, −1.65884713252355986403527054651, 0.47057475450149827222893662640, 1.77613831638991402525053912138, 3.21046568866023685678916216702, 3.91920670958254897482281886614, 4.50680658835662007852365179417, 5.75377103737526064573708768654, 6.14458728011958769585507479192, 7.26678644220347364704891937833, 7.917620232005015055231186763684, 8.555591596230864262933126751342

Graph of the $Z$-function along the critical line