L(s) = 1 | + (−9 + 9i)3-s + (15 − 20i)5-s + (29 + 29i)7-s − 81i·9-s + 118·11-s + (−69 + 69i)13-s + (45 + 315i)15-s + (−271 − 271i)17-s − 280i·19-s − 522·21-s + (269 − 269i)23-s + (−175 − 600i)25-s − 680i·29-s + 202·31-s + (−1.06e3 + 1.06e3i)33-s + ⋯ |
L(s) = 1 | + (−1 + i)3-s + (0.599 − 0.800i)5-s + (0.591 + 0.591i)7-s − i·9-s + 0.975·11-s + (−0.408 + 0.408i)13-s + (0.200 + 1.39i)15-s + (−0.937 − 0.937i)17-s − 0.775i·19-s − 1.18·21-s + (0.508 − 0.508i)23-s + (−0.280 − 0.960i)25-s − 0.808i·29-s + 0.210·31-s + (−0.975 + 0.975i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 + 0.0898i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.995 + 0.0898i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(1.562377393\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.562377393\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-15 + 20i)T \) |
good | 3 | \( 1 + (9 - 9i)T - 81iT^{2} \) |
| 7 | \( 1 + (-29 - 29i)T + 2.40e3iT^{2} \) |
| 11 | \( 1 - 118T + 1.46e4T^{2} \) |
| 13 | \( 1 + (69 - 69i)T - 2.85e4iT^{2} \) |
| 17 | \( 1 + (271 + 271i)T + 8.35e4iT^{2} \) |
| 19 | \( 1 + 280iT - 1.30e5T^{2} \) |
| 23 | \( 1 + (-269 + 269i)T - 2.79e5iT^{2} \) |
| 29 | \( 1 + 680iT - 7.07e5T^{2} \) |
| 31 | \( 1 - 202T + 9.23e5T^{2} \) |
| 37 | \( 1 + (-651 - 651i)T + 1.87e6iT^{2} \) |
| 41 | \( 1 - 1.68e3T + 2.82e6T^{2} \) |
| 43 | \( 1 + (1.08e3 - 1.08e3i)T - 3.41e6iT^{2} \) |
| 47 | \( 1 + (-1.26e3 - 1.26e3i)T + 4.87e6iT^{2} \) |
| 53 | \( 1 + (-611 + 611i)T - 7.89e6iT^{2} \) |
| 59 | \( 1 + 1.16e3iT - 1.21e7T^{2} \) |
| 61 | \( 1 - 5.59e3T + 1.38e7T^{2} \) |
| 67 | \( 1 + (-751 - 751i)T + 2.01e7iT^{2} \) |
| 71 | \( 1 - 6.44e3T + 2.54e7T^{2} \) |
| 73 | \( 1 + (2.95e3 - 2.95e3i)T - 2.83e7iT^{2} \) |
| 79 | \( 1 - 1.05e4iT - 3.89e7T^{2} \) |
| 83 | \( 1 + (-6.23e3 + 6.23e3i)T - 4.74e7iT^{2} \) |
| 89 | \( 1 + 1.44e4iT - 6.27e7T^{2} \) |
| 97 | \( 1 + (7.31e3 + 7.31e3i)T + 8.85e7iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.30246925645301388823958042361, −9.895740591167785603047595924873, −9.318955978709490159515200194133, −8.504438475767380224086509619594, −6.80808687858650603736965031815, −5.81214576845015926630218461563, −4.82960546435574340720827501729, −4.38902995179078359603608706702, −2.29772800655352933009252419353, −0.66429408674969750247922005587,
1.03600447697540845386744642628, 2.03648226993747861063418503083, 3.82981083777102127284975139834, 5.34050603876604129354937448069, 6.29016973021908785390084376222, 6.94497326190464113141106216272, 7.79759814856610025795185698188, 9.194830845253175111750248185477, 10.46577864984776010251001490509, 11.01762148796394526213899737925