Properties

Label 2-320-40.3-c1-0-9
Degree $2$
Conductor $320$
Sign $-0.477 + 0.878i$
Analytic cond. $2.55521$
Root an. cond. $1.59850$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.456 + 0.456i)3-s + (−2.18 − 0.456i)5-s + (−2.79 − 2.79i)7-s − 2.58i·9-s − 4.37·11-s + (1.73 − 1.73i)13-s + (−0.791 − 1.20i)15-s + (3 − 3i)17-s + 3.46i·19-s − 2.55i·21-s + (−0.791 + 0.791i)23-s + (4.58 + 1.99i)25-s + (2.55 − 2.55i)27-s − 5.29·29-s − 1.58i·31-s + ⋯
L(s)  = 1  + (0.263 + 0.263i)3-s + (−0.978 − 0.204i)5-s + (−1.05 − 1.05i)7-s − 0.860i·9-s − 1.31·11-s + (0.480 − 0.480i)13-s + (−0.204 − 0.312i)15-s + (0.727 − 0.727i)17-s + 0.794i·19-s − 0.556i·21-s + (−0.164 + 0.164i)23-s + (0.916 + 0.399i)25-s + (0.490 − 0.490i)27-s − 0.982·29-s − 0.284i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.477 + 0.878i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.477 + 0.878i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(320\)    =    \(2^{6} \cdot 5\)
Sign: $-0.477 + 0.878i$
Analytic conductor: \(2.55521\)
Root analytic conductor: \(1.59850\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{320} (223, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 320,\ (\ :1/2),\ -0.477 + 0.878i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.344474 - 0.579085i\)
\(L(\frac12)\) \(\approx\) \(0.344474 - 0.579085i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (2.18 + 0.456i)T \)
good3 \( 1 + (-0.456 - 0.456i)T + 3iT^{2} \)
7 \( 1 + (2.79 + 2.79i)T + 7iT^{2} \)
11 \( 1 + 4.37T + 11T^{2} \)
13 \( 1 + (-1.73 + 1.73i)T - 13iT^{2} \)
17 \( 1 + (-3 + 3i)T - 17iT^{2} \)
19 \( 1 - 3.46iT - 19T^{2} \)
23 \( 1 + (0.791 - 0.791i)T - 23iT^{2} \)
29 \( 1 + 5.29T + 29T^{2} \)
31 \( 1 + 1.58iT - 31T^{2} \)
37 \( 1 + (-5.19 - 5.19i)T + 37iT^{2} \)
41 \( 1 + 7.58T + 41T^{2} \)
43 \( 1 + (8.29 + 8.29i)T + 43iT^{2} \)
47 \( 1 + (-0.791 - 0.791i)T + 47iT^{2} \)
53 \( 1 + (-2.64 + 2.64i)T - 53iT^{2} \)
59 \( 1 + 5.29iT - 59T^{2} \)
61 \( 1 + 9.66iT - 61T^{2} \)
67 \( 1 + (-8.29 + 8.29i)T - 67iT^{2} \)
71 \( 1 - 13.5iT - 71T^{2} \)
73 \( 1 + (-0.582 - 0.582i)T + 73iT^{2} \)
79 \( 1 - 12T + 79T^{2} \)
83 \( 1 + (-4.83 - 4.83i)T + 83iT^{2} \)
89 \( 1 - 3.16iT - 89T^{2} \)
97 \( 1 + (-0.582 + 0.582i)T - 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.29960016337374001669221165967, −10.22249697478881673878086068794, −9.687993132472621404259506617232, −8.343185492906452055757649944605, −7.59737878261351659067289442165, −6.60412545740740090772474346882, −5.22276337912830970750043747320, −3.75433268999048296284672652914, −3.27082878960383257427154112392, −0.45278802364928996872331092140, 2.42332715057219706725686221249, 3.43520546188331798267294970685, 4.97633324809786849724108151787, 6.10482018581484000576979481013, 7.30846342998842351201842812739, 8.134263079708149161090852112635, 8.937210305911062063506412565162, 10.17401507378427631529189526603, 11.03855377538165402554120056140, 11.99779786429193684651186197571

Graph of the $Z$-function along the critical line