L(s) = 1 | + (−1 − i)3-s + (1 − 2i)5-s + (1 + i)7-s − i·9-s − 4·11-s + (3 − 3i)13-s + (−3 + i)15-s + (−3 + 3i)17-s − 6i·19-s − 2i·21-s + (3 − 3i)23-s + (−3 − 4i)25-s + (−4 + 4i)27-s − 2·29-s − 6i·31-s + ⋯ |
L(s) = 1 | + (−0.577 − 0.577i)3-s + (0.447 − 0.894i)5-s + (0.377 + 0.377i)7-s − 0.333i·9-s − 1.20·11-s + (0.832 − 0.832i)13-s + (−0.774 + 0.258i)15-s + (−0.727 + 0.727i)17-s − 1.37i·19-s − 0.436i·21-s + (0.625 − 0.625i)23-s + (−0.600 − 0.800i)25-s + (−0.769 + 0.769i)27-s − 0.371·29-s − 1.07i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.229 + 0.973i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.229 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.658540 - 0.832101i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.658540 - 0.832101i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-1 + 2i)T \) |
good | 3 | \( 1 + (1 + i)T + 3iT^{2} \) |
| 7 | \( 1 + (-1 - i)T + 7iT^{2} \) |
| 11 | \( 1 + 4T + 11T^{2} \) |
| 13 | \( 1 + (-3 + 3i)T - 13iT^{2} \) |
| 17 | \( 1 + (3 - 3i)T - 17iT^{2} \) |
| 19 | \( 1 + 6iT - 19T^{2} \) |
| 23 | \( 1 + (-3 + 3i)T - 23iT^{2} \) |
| 29 | \( 1 + 2T + 29T^{2} \) |
| 31 | \( 1 + 6iT - 31T^{2} \) |
| 37 | \( 1 + (-3 - 3i)T + 37iT^{2} \) |
| 41 | \( 1 - 6T + 41T^{2} \) |
| 43 | \( 1 + (-3 - 3i)T + 43iT^{2} \) |
| 47 | \( 1 + (-9 - 9i)T + 47iT^{2} \) |
| 53 | \( 1 + (5 - 5i)T - 53iT^{2} \) |
| 59 | \( 1 - 10iT - 59T^{2} \) |
| 61 | \( 1 - 12iT - 61T^{2} \) |
| 67 | \( 1 + (-9 + 9i)T - 67iT^{2} \) |
| 71 | \( 1 + 6iT - 71T^{2} \) |
| 73 | \( 1 + (-5 - 5i)T + 73iT^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + (-3 - 3i)T + 83iT^{2} \) |
| 89 | \( 1 - 89T^{2} \) |
| 97 | \( 1 + (7 - 7i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.31804764539412514442926030117, −10.70124047877461712769708512107, −9.336144370769765060209181653600, −8.558067478567706391011834403639, −7.58813959418197468660231069803, −6.21326722876021370888278247727, −5.56968804369757226170266971743, −4.47025951916564877796144876158, −2.52233851425696915568887969611, −0.836911818248934520656548134798,
2.14516032240051392749412491179, 3.72309449714298320370921788076, 5.00372140552944224265346215066, 5.87518890457865612842291161034, 7.05442551331541301332281952264, 7.987887788376401849217127533011, 9.343206674305673576138163149490, 10.32144768780548932501112305512, 10.93175263835115803707514240925, 11.42819588866258257216885719203