L(s) = 1 | + (−1 + i)3-s + (1 + 2i)5-s + (1 − i)7-s + i·9-s − 4·11-s + (3 + 3i)13-s + (−3 − i)15-s + (−3 − 3i)17-s + 6i·19-s + 2i·21-s + (3 + 3i)23-s + (−3 + 4i)25-s + (−4 − 4i)27-s − 2·29-s + 6i·31-s + ⋯ |
L(s) = 1 | + (−0.577 + 0.577i)3-s + (0.447 + 0.894i)5-s + (0.377 − 0.377i)7-s + 0.333i·9-s − 1.20·11-s + (0.832 + 0.832i)13-s + (−0.774 − 0.258i)15-s + (−0.727 − 0.727i)17-s + 1.37i·19-s + 0.436i·21-s + (0.625 + 0.625i)23-s + (−0.600 + 0.800i)25-s + (−0.769 − 0.769i)27-s − 0.371·29-s + 1.07i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.229 - 0.973i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.229 - 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.658540 + 0.832101i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.658540 + 0.832101i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-1 - 2i)T \) |
good | 3 | \( 1 + (1 - i)T - 3iT^{2} \) |
| 7 | \( 1 + (-1 + i)T - 7iT^{2} \) |
| 11 | \( 1 + 4T + 11T^{2} \) |
| 13 | \( 1 + (-3 - 3i)T + 13iT^{2} \) |
| 17 | \( 1 + (3 + 3i)T + 17iT^{2} \) |
| 19 | \( 1 - 6iT - 19T^{2} \) |
| 23 | \( 1 + (-3 - 3i)T + 23iT^{2} \) |
| 29 | \( 1 + 2T + 29T^{2} \) |
| 31 | \( 1 - 6iT - 31T^{2} \) |
| 37 | \( 1 + (-3 + 3i)T - 37iT^{2} \) |
| 41 | \( 1 - 6T + 41T^{2} \) |
| 43 | \( 1 + (-3 + 3i)T - 43iT^{2} \) |
| 47 | \( 1 + (-9 + 9i)T - 47iT^{2} \) |
| 53 | \( 1 + (5 + 5i)T + 53iT^{2} \) |
| 59 | \( 1 + 10iT - 59T^{2} \) |
| 61 | \( 1 + 12iT - 61T^{2} \) |
| 67 | \( 1 + (-9 - 9i)T + 67iT^{2} \) |
| 71 | \( 1 - 6iT - 71T^{2} \) |
| 73 | \( 1 + (-5 + 5i)T - 73iT^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + (-3 + 3i)T - 83iT^{2} \) |
| 89 | \( 1 - 89T^{2} \) |
| 97 | \( 1 + (7 + 7i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.42819588866258257216885719203, −10.93175263835115803707514240925, −10.32144768780548932501112305512, −9.343206674305673576138163149490, −7.987887788376401849217127533011, −7.05442551331541301332281952264, −5.87518890457865612842291161034, −5.00372140552944224265346215066, −3.72309449714298320370921788076, −2.14516032240051392749412491179,
0.836911818248934520656548134798, 2.52233851425696915568887969611, 4.47025951916564877796144876158, 5.56968804369757226170266971743, 6.21326722876021370888278247727, 7.58813959418197468660231069803, 8.558067478567706391011834403639, 9.336144370769765060209181653600, 10.70124047877461712769708512107, 11.31804764539412514442926030117