Properties

Label 2-320-40.27-c1-0-2
Degree $2$
Conductor $320$
Sign $-0.229 - 0.973i$
Analytic cond. $2.55521$
Root an. cond. $1.59850$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1 + i)3-s + (1 + 2i)5-s + (1 − i)7-s + i·9-s − 4·11-s + (3 + 3i)13-s + (−3 − i)15-s + (−3 − 3i)17-s + 6i·19-s + 2i·21-s + (3 + 3i)23-s + (−3 + 4i)25-s + (−4 − 4i)27-s − 2·29-s + 6i·31-s + ⋯
L(s)  = 1  + (−0.577 + 0.577i)3-s + (0.447 + 0.894i)5-s + (0.377 − 0.377i)7-s + 0.333i·9-s − 1.20·11-s + (0.832 + 0.832i)13-s + (−0.774 − 0.258i)15-s + (−0.727 − 0.727i)17-s + 1.37i·19-s + 0.436i·21-s + (0.625 + 0.625i)23-s + (−0.600 + 0.800i)25-s + (−0.769 − 0.769i)27-s − 0.371·29-s + 1.07i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.229 - 0.973i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.229 - 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(320\)    =    \(2^{6} \cdot 5\)
Sign: $-0.229 - 0.973i$
Analytic conductor: \(2.55521\)
Root analytic conductor: \(1.59850\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{320} (287, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 320,\ (\ :1/2),\ -0.229 - 0.973i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.658540 + 0.832101i\)
\(L(\frac12)\) \(\approx\) \(0.658540 + 0.832101i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (-1 - 2i)T \)
good3 \( 1 + (1 - i)T - 3iT^{2} \)
7 \( 1 + (-1 + i)T - 7iT^{2} \)
11 \( 1 + 4T + 11T^{2} \)
13 \( 1 + (-3 - 3i)T + 13iT^{2} \)
17 \( 1 + (3 + 3i)T + 17iT^{2} \)
19 \( 1 - 6iT - 19T^{2} \)
23 \( 1 + (-3 - 3i)T + 23iT^{2} \)
29 \( 1 + 2T + 29T^{2} \)
31 \( 1 - 6iT - 31T^{2} \)
37 \( 1 + (-3 + 3i)T - 37iT^{2} \)
41 \( 1 - 6T + 41T^{2} \)
43 \( 1 + (-3 + 3i)T - 43iT^{2} \)
47 \( 1 + (-9 + 9i)T - 47iT^{2} \)
53 \( 1 + (5 + 5i)T + 53iT^{2} \)
59 \( 1 + 10iT - 59T^{2} \)
61 \( 1 + 12iT - 61T^{2} \)
67 \( 1 + (-9 - 9i)T + 67iT^{2} \)
71 \( 1 - 6iT - 71T^{2} \)
73 \( 1 + (-5 + 5i)T - 73iT^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 + (-3 + 3i)T - 83iT^{2} \)
89 \( 1 - 89T^{2} \)
97 \( 1 + (7 + 7i)T + 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.42819588866258257216885719203, −10.93175263835115803707514240925, −10.32144768780548932501112305512, −9.343206674305673576138163149490, −7.987887788376401849217127533011, −7.05442551331541301332281952264, −5.87518890457865612842291161034, −5.00372140552944224265346215066, −3.72309449714298320370921788076, −2.14516032240051392749412491179, 0.836911818248934520656548134798, 2.52233851425696915568887969611, 4.47025951916564877796144876158, 5.56968804369757226170266971743, 6.21326722876021370888278247727, 7.58813959418197468660231069803, 8.558067478567706391011834403639, 9.336144370769765060209181653600, 10.70124047877461712769708512107, 11.31804764539412514442926030117

Graph of the $Z$-function along the critical line