Properties

Label 2-320-320.307-c1-0-5
Degree $2$
Conductor $320$
Sign $-0.992 - 0.124i$
Analytic cond. $2.55521$
Root an. cond. $1.59850$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.966 + 1.03i)2-s + (−1.15 − 0.229i)3-s + (−0.131 + 1.99i)4-s + (−1.56 + 1.59i)5-s + (−0.878 − 1.41i)6-s + (0.0938 + 0.0388i)7-s + (−2.18 + 1.79i)8-s + (−1.49 − 0.617i)9-s + (−3.16 − 0.0745i)10-s + (−0.0544 − 0.0364i)11-s + (0.609 − 2.27i)12-s + (−2.30 + 1.54i)13-s + (0.0506 + 0.134i)14-s + (2.17 − 1.48i)15-s + (−3.96 − 0.522i)16-s + 2.67i·17-s + ⋯
L(s)  = 1  + (0.683 + 0.729i)2-s + (−0.666 − 0.132i)3-s + (−0.0655 + 0.997i)4-s + (−0.700 + 0.713i)5-s + (−0.358 − 0.577i)6-s + (0.0354 + 0.0146i)7-s + (−0.773 + 0.634i)8-s + (−0.497 − 0.205i)9-s + (−0.999 − 0.0235i)10-s + (−0.0164 − 0.0109i)11-s + (0.175 − 0.656i)12-s + (−0.639 + 0.427i)13-s + (0.0135 + 0.0359i)14-s + (0.561 − 0.382i)15-s + (−0.991 − 0.130i)16-s + 0.648i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.992 - 0.124i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.992 - 0.124i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(320\)    =    \(2^{6} \cdot 5\)
Sign: $-0.992 - 0.124i$
Analytic conductor: \(2.55521\)
Root analytic conductor: \(1.59850\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{320} (307, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 320,\ (\ :1/2),\ -0.992 - 0.124i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0535132 + 0.856728i\)
\(L(\frac12)\) \(\approx\) \(0.0535132 + 0.856728i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.966 - 1.03i)T \)
5 \( 1 + (1.56 - 1.59i)T \)
good3 \( 1 + (1.15 + 0.229i)T + (2.77 + 1.14i)T^{2} \)
7 \( 1 + (-0.0938 - 0.0388i)T + (4.94 + 4.94i)T^{2} \)
11 \( 1 + (0.0544 + 0.0364i)T + (4.20 + 10.1i)T^{2} \)
13 \( 1 + (2.30 - 1.54i)T + (4.97 - 12.0i)T^{2} \)
17 \( 1 - 2.67iT - 17T^{2} \)
19 \( 1 + (-0.0181 + 0.0910i)T + (-17.5 - 7.27i)T^{2} \)
23 \( 1 + (-1.44 - 3.48i)T + (-16.2 + 16.2i)T^{2} \)
29 \( 1 + (3.80 - 2.54i)T + (11.0 - 26.7i)T^{2} \)
31 \( 1 - 5.49T + 31T^{2} \)
37 \( 1 + (4.29 - 6.43i)T + (-14.1 - 34.1i)T^{2} \)
41 \( 1 + (-6.08 - 2.52i)T + (28.9 + 28.9i)T^{2} \)
43 \( 1 + (-0.207 - 1.04i)T + (-39.7 + 16.4i)T^{2} \)
47 \( 1 - 12.1T + 47T^{2} \)
53 \( 1 + (-1.38 - 6.95i)T + (-48.9 + 20.2i)T^{2} \)
59 \( 1 + (-5.59 + 1.11i)T + (54.5 - 22.5i)T^{2} \)
61 \( 1 + (-3.72 + 2.49i)T + (23.3 - 56.3i)T^{2} \)
67 \( 1 + (0.687 - 3.45i)T + (-61.8 - 25.6i)T^{2} \)
71 \( 1 + (7.82 - 3.24i)T + (50.2 - 50.2i)T^{2} \)
73 \( 1 + (1.32 + 3.20i)T + (-51.6 + 51.6i)T^{2} \)
79 \( 1 + (-8.52 + 8.52i)T - 79iT^{2} \)
83 \( 1 + (7.11 - 4.75i)T + (31.7 - 76.6i)T^{2} \)
89 \( 1 + (4.37 + 10.5i)T + (-62.9 + 62.9i)T^{2} \)
97 \( 1 + (4.98 - 4.98i)T - 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.93997388087482532308663311590, −11.54931159958005572008442992332, −10.51237722339356584993436122724, −9.032778438060468779880011151140, −7.965423770214363153182664384517, −7.05588948866985114082209086174, −6.28300757198310578661961295504, −5.25796058136833308817129361950, −4.06034549333907277529977717187, −2.87554379401044902776282999811, 0.52149219790015399004074303888, 2.63097891088295773944188361492, 4.11848723330643291625330705217, 5.04317978531954416249906193073, 5.78005042036537347627323896534, 7.20337265066590087255688858701, 8.500996250945402241919695580025, 9.532419828897386134786055777039, 10.62835232475141054602704699539, 11.33479800720309511921597593764

Graph of the $Z$-function along the critical line