L(s) = 1 | + (0.809 − 0.587i)2-s + (0.5 − 0.866i)5-s + (0.978 − 0.207i)7-s + (0.309 + 0.951i)8-s + (−0.978 − 0.207i)9-s + (−0.104 − 0.994i)10-s + (0.669 − 0.743i)14-s + (0.809 + 0.587i)16-s + (−0.913 + 0.406i)18-s + (−0.913 − 0.406i)19-s + (0.309 − 0.951i)35-s + (−0.978 + 0.207i)38-s + (0.978 + 0.207i)40-s + (0.104 + 0.994i)41-s + (−0.669 + 0.743i)45-s + ⋯ |
L(s) = 1 | + (0.809 − 0.587i)2-s + (0.5 − 0.866i)5-s + (0.978 − 0.207i)7-s + (0.309 + 0.951i)8-s + (−0.978 − 0.207i)9-s + (−0.104 − 0.994i)10-s + (0.669 − 0.743i)14-s + (0.809 + 0.587i)16-s + (−0.913 + 0.406i)18-s + (−0.913 − 0.406i)19-s + (0.309 − 0.951i)35-s + (−0.978 + 0.207i)38-s + (0.978 + 0.207i)40-s + (0.104 + 0.994i)41-s + (−0.669 + 0.743i)45-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.669 + 0.742i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.669 + 0.742i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.626151421\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.626151421\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 31 | \( 1 \) |
good | 2 | \( 1 + (-0.809 + 0.587i)T + (0.309 - 0.951i)T^{2} \) |
| 3 | \( 1 + (0.978 + 0.207i)T^{2} \) |
| 5 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 + (-0.978 + 0.207i)T + (0.913 - 0.406i)T^{2} \) |
| 11 | \( 1 + (0.104 - 0.994i)T^{2} \) |
| 13 | \( 1 + (-0.669 + 0.743i)T^{2} \) |
| 17 | \( 1 + (0.104 + 0.994i)T^{2} \) |
| 19 | \( 1 + (0.913 + 0.406i)T + (0.669 + 0.743i)T^{2} \) |
| 23 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 29 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.104 - 0.994i)T + (-0.978 + 0.207i)T^{2} \) |
| 43 | \( 1 + (-0.669 - 0.743i)T^{2} \) |
| 47 | \( 1 + (1.61 + 1.17i)T + (0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (-0.913 - 0.406i)T^{2} \) |
| 59 | \( 1 + (-0.104 + 0.994i)T + (-0.978 - 0.207i)T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.978 - 0.207i)T + (0.913 + 0.406i)T^{2} \) |
| 73 | \( 1 + (0.104 - 0.994i)T^{2} \) |
| 79 | \( 1 + (0.104 + 0.994i)T^{2} \) |
| 83 | \( 1 + (0.978 - 0.207i)T^{2} \) |
| 89 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 97 | \( 1 + (0.309 - 0.951i)T + (-0.809 - 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.33478660072070114911709384284, −9.142718481717725260669551767750, −8.469154606519973285836416536759, −7.896979140231161597035985485921, −6.46101099466718733896955973402, −5.32493451157343929425099773652, −4.89654453698213806799888124776, −3.91734267389053394036883341751, −2.71665754552043616045680626578, −1.62630539029025569950701040810,
1.91889955753860796018432583885, 3.12073496653533552091809481045, 4.37816571753116951183572140188, 5.24487836005615928883069115786, 6.01542565225747719005281052547, 6.62550722293659408774453356583, 7.69554190136341208031224248106, 8.509432000786197797439662747301, 9.549075258622067492864488500434, 10.54791896417492195793180778812