L(s) = 1 | + 1.61·2-s + (0.5 + 0.866i)3-s + 0.618·4-s + (0.190 − 0.330i)5-s + (0.809 + 1.40i)6-s + (−1.5 − 2.59i)7-s − 2.23·8-s + (1 − 1.73i)9-s + (0.309 − 0.535i)10-s + (2.61 − 4.53i)11-s + (0.309 + 0.535i)12-s + (0.927 − 1.60i)13-s + (−2.42 − 4.20i)14-s + 0.381·15-s − 4.85·16-s + (2.11 + 3.66i)17-s + ⋯ |
L(s) = 1 | + 1.14·2-s + (0.288 + 0.499i)3-s + 0.309·4-s + (0.0854 − 0.147i)5-s + (0.330 + 0.572i)6-s + (−0.566 − 0.981i)7-s − 0.790·8-s + (0.333 − 0.577i)9-s + (0.0977 − 0.169i)10-s + (0.789 − 1.36i)11-s + (0.0892 + 0.154i)12-s + (0.257 − 0.445i)13-s + (−0.648 − 1.12i)14-s + 0.0986·15-s − 1.21·16-s + (0.513 + 0.889i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.602 + 0.798i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.602 + 0.798i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.41288 - 1.20148i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.41288 - 1.20148i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 31 | \( 1 \) |
good | 2 | \( 1 - 1.61T + 2T^{2} \) |
| 3 | \( 1 + (-0.5 - 0.866i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-0.190 + 0.330i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (1.5 + 2.59i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.61 + 4.53i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.927 + 1.60i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-2.11 - 3.66i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.5 + 4.33i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 3.47T + 23T^{2} \) |
| 29 | \( 1 + 6.38T + 29T^{2} \) |
| 37 | \( 1 + (-2.11 - 3.66i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.23 + 2.14i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.19 - 2.06i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 5.61T + 47T^{2} \) |
| 53 | \( 1 + (0.354 - 0.613i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (0.263 + 0.457i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 - 10.9T + 61T^{2} \) |
| 67 | \( 1 + (0.118 - 0.204i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-5.54 + 9.60i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (5.78 - 10.0i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (3.54 - 6.14i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 8.61T + 89T^{2} \) |
| 97 | \( 1 + 18.7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.848490707728626300813043494726, −9.102145627017218828752787007067, −8.457605032384947317844090793052, −6.99912208761046916675679942152, −6.32439091661178827062059344935, −5.46084277892701151564483091195, −4.32867812154220735062944110075, −3.61139875323094094272934586296, −3.16685279776922432689555603299, −0.881689535144973294210382373815,
1.90235990905596620668966263654, 2.79027063160270637161527285013, 3.97575020830683024461506652017, 4.82655985246766272231881867492, 5.76656416609085664049647129978, 6.63120922657954991949760348294, 7.31774072118768292731251352037, 8.534998898850140214862758480171, 9.341993183077330501068625524682, 9.978219081642395079502770143405