L(s) = 1 | − 0.618·2-s + (0.5 + 0.866i)3-s − 1.61·4-s + (1.30 − 2.26i)5-s + (−0.309 − 0.535i)6-s + (−1.5 − 2.59i)7-s + 2.23·8-s + (1 − 1.73i)9-s + (−0.809 + 1.40i)10-s + (0.381 − 0.661i)11-s + (−0.809 − 1.40i)12-s + (−2.42 + 4.20i)13-s + (0.927 + 1.60i)14-s + 2.61·15-s + 1.85·16-s + (−0.118 − 0.204i)17-s + ⋯ |
L(s) = 1 | − 0.437·2-s + (0.288 + 0.499i)3-s − 0.809·4-s + (0.585 − 1.01i)5-s + (−0.126 − 0.218i)6-s + (−0.566 − 0.981i)7-s + 0.790·8-s + (0.333 − 0.577i)9-s + (−0.255 + 0.443i)10-s + (0.115 − 0.199i)11-s + (−0.233 − 0.404i)12-s + (−0.673 + 1.16i)13-s + (0.247 + 0.429i)14-s + 0.675·15-s + 0.463·16-s + (−0.0286 − 0.0495i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.778 + 0.628i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.778 + 0.628i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.212822 - 0.602545i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.212822 - 0.602545i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 31 | \( 1 \) |
good | 2 | \( 1 + 0.618T + 2T^{2} \) |
| 3 | \( 1 + (-0.5 - 0.866i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-1.30 + 2.26i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (1.5 + 2.59i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.381 + 0.661i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (2.42 - 4.20i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (0.118 + 0.204i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.5 + 4.33i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 5.47T + 23T^{2} \) |
| 29 | \( 1 + 8.61T + 29T^{2} \) |
| 37 | \( 1 + (0.118 + 0.204i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (3.23 - 5.60i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.30 - 3.99i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 3.38T + 47T^{2} \) |
| 53 | \( 1 + (-6.35 + 11.0i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (4.73 + 8.20i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + 6.94T + 61T^{2} \) |
| 67 | \( 1 + (-2.11 + 3.66i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (0.0450 - 0.0780i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-4.28 + 7.41i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-2.04 + 3.54i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 6.38T + 89T^{2} \) |
| 97 | \( 1 + 5.29T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.521105813253484560612593464035, −9.208411918233403504768112107082, −8.341352074780228784492968584256, −7.24945694673166805760394367961, −6.34976605596494336238259647734, −5.00641357238536173523840645249, −4.35100566033226139829000256197, −3.62664573896987501163419635451, −1.71190288189301564946508895301, −0.33299250415739078388170106211,
1.87814850913932960187901449661, 2.73666079006984398451906007212, 3.99208839478885984526288914227, 5.40772206936483331245347303077, 6.00782418633550723456298887717, 7.21452330103488761703395776010, 7.85051196984569619879995924242, 8.686935751897333952221350564520, 9.603877753570966576602126385689, 10.23869091155144907052134976126