L(s) = 1 | + (−0.309 − 0.951i)2-s + (0.5 − 0.866i)5-s + (−0.913 − 0.406i)7-s + (−0.809 − 0.587i)8-s + (0.913 − 0.406i)9-s + (−0.978 − 0.207i)10-s + (−0.104 + 0.994i)14-s + (−0.309 + 0.951i)16-s + (−0.669 − 0.743i)18-s + (−0.669 + 0.743i)19-s + (−0.809 + 0.587i)35-s + (0.913 + 0.406i)38-s + (−0.913 + 0.406i)40-s + (0.978 + 0.207i)41-s + (0.104 − 0.994i)45-s + ⋯ |
L(s) = 1 | + (−0.309 − 0.951i)2-s + (0.5 − 0.866i)5-s + (−0.913 − 0.406i)7-s + (−0.809 − 0.587i)8-s + (0.913 − 0.406i)9-s + (−0.978 − 0.207i)10-s + (−0.104 + 0.994i)14-s + (−0.309 + 0.951i)16-s + (−0.669 − 0.743i)18-s + (−0.669 + 0.743i)19-s + (−0.809 + 0.587i)35-s + (0.913 + 0.406i)38-s + (−0.913 + 0.406i)40-s + (0.978 + 0.207i)41-s + (0.104 − 0.994i)45-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.807 + 0.589i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.807 + 0.589i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9107643949\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9107643949\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 31 | \( 1 \) |
good | 2 | \( 1 + (0.309 + 0.951i)T + (-0.809 + 0.587i)T^{2} \) |
| 3 | \( 1 + (-0.913 + 0.406i)T^{2} \) |
| 5 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 + (0.913 + 0.406i)T + (0.669 + 0.743i)T^{2} \) |
| 11 | \( 1 + (0.978 - 0.207i)T^{2} \) |
| 13 | \( 1 + (0.104 - 0.994i)T^{2} \) |
| 17 | \( 1 + (0.978 + 0.207i)T^{2} \) |
| 19 | \( 1 + (0.669 - 0.743i)T + (-0.104 - 0.994i)T^{2} \) |
| 23 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 29 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.978 - 0.207i)T + (0.913 + 0.406i)T^{2} \) |
| 43 | \( 1 + (0.104 + 0.994i)T^{2} \) |
| 47 | \( 1 + (-0.618 + 1.90i)T + (-0.809 - 0.587i)T^{2} \) |
| 53 | \( 1 + (-0.669 + 0.743i)T^{2} \) |
| 59 | \( 1 + (-0.978 + 0.207i)T + (0.913 - 0.406i)T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.913 - 0.406i)T + (0.669 - 0.743i)T^{2} \) |
| 73 | \( 1 + (0.978 - 0.207i)T^{2} \) |
| 79 | \( 1 + (0.978 + 0.207i)T^{2} \) |
| 83 | \( 1 + (-0.913 - 0.406i)T^{2} \) |
| 89 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 97 | \( 1 + (-0.809 + 0.587i)T + (0.309 - 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.14229612812315946641884946502, −9.293121793685372920091946422761, −8.668845731184246260635327276139, −7.27295480062888039401394859434, −6.47038887245804618376674019148, −5.62869560848996987430579243777, −4.26716324177162205069320005051, −3.44368012399921943526748564184, −2.09545288495577375716758236149, −1.00061971667030243643718911363,
2.27960521838163076910440479858, 3.09585172393795666832028984302, 4.55495391260238007933615446520, 5.86956157698202856330548266161, 6.41357740883560637263961461877, 7.09578820521234431776332984124, 7.79632114020138440770562196174, 8.922713563195981647552494369636, 9.550916300889524162299773992587, 10.45757458626267020735397215383