Properties

Label 2-31e2-31.24-c0-0-0
Degree $2$
Conductor $961$
Sign $-0.807 + 0.589i$
Analytic cond. $0.479601$
Root an. cond. $0.692532$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.309 − 0.951i)2-s + (0.5 − 0.866i)5-s + (−0.913 − 0.406i)7-s + (−0.809 − 0.587i)8-s + (0.913 − 0.406i)9-s + (−0.978 − 0.207i)10-s + (−0.104 + 0.994i)14-s + (−0.309 + 0.951i)16-s + (−0.669 − 0.743i)18-s + (−0.669 + 0.743i)19-s + (−0.809 + 0.587i)35-s + (0.913 + 0.406i)38-s + (−0.913 + 0.406i)40-s + (0.978 + 0.207i)41-s + (0.104 − 0.994i)45-s + ⋯
L(s)  = 1  + (−0.309 − 0.951i)2-s + (0.5 − 0.866i)5-s + (−0.913 − 0.406i)7-s + (−0.809 − 0.587i)8-s + (0.913 − 0.406i)9-s + (−0.978 − 0.207i)10-s + (−0.104 + 0.994i)14-s + (−0.309 + 0.951i)16-s + (−0.669 − 0.743i)18-s + (−0.669 + 0.743i)19-s + (−0.809 + 0.587i)35-s + (0.913 + 0.406i)38-s + (−0.913 + 0.406i)40-s + (0.978 + 0.207i)41-s + (0.104 − 0.994i)45-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.807 + 0.589i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.807 + 0.589i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(961\)    =    \(31^{2}\)
Sign: $-0.807 + 0.589i$
Analytic conductor: \(0.479601\)
Root analytic conductor: \(0.692532\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{961} (117, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 961,\ (\ :0),\ -0.807 + 0.589i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.9107643949\)
\(L(\frac12)\) \(\approx\) \(0.9107643949\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad31 \( 1 \)
good2 \( 1 + (0.309 + 0.951i)T + (-0.809 + 0.587i)T^{2} \)
3 \( 1 + (-0.913 + 0.406i)T^{2} \)
5 \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \)
7 \( 1 + (0.913 + 0.406i)T + (0.669 + 0.743i)T^{2} \)
11 \( 1 + (0.978 - 0.207i)T^{2} \)
13 \( 1 + (0.104 - 0.994i)T^{2} \)
17 \( 1 + (0.978 + 0.207i)T^{2} \)
19 \( 1 + (0.669 - 0.743i)T + (-0.104 - 0.994i)T^{2} \)
23 \( 1 + (-0.309 - 0.951i)T^{2} \)
29 \( 1 + (0.809 - 0.587i)T^{2} \)
37 \( 1 + (0.5 - 0.866i)T^{2} \)
41 \( 1 + (-0.978 - 0.207i)T + (0.913 + 0.406i)T^{2} \)
43 \( 1 + (0.104 + 0.994i)T^{2} \)
47 \( 1 + (-0.618 + 1.90i)T + (-0.809 - 0.587i)T^{2} \)
53 \( 1 + (-0.669 + 0.743i)T^{2} \)
59 \( 1 + (-0.978 + 0.207i)T + (0.913 - 0.406i)T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \)
71 \( 1 + (0.913 - 0.406i)T + (0.669 - 0.743i)T^{2} \)
73 \( 1 + (0.978 - 0.207i)T^{2} \)
79 \( 1 + (0.978 + 0.207i)T^{2} \)
83 \( 1 + (-0.913 - 0.406i)T^{2} \)
89 \( 1 + (-0.309 + 0.951i)T^{2} \)
97 \( 1 + (-0.809 + 0.587i)T + (0.309 - 0.951i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.14229612812315946641884946502, −9.293121793685372920091946422761, −8.668845731184246260635327276139, −7.27295480062888039401394859434, −6.47038887245804618376674019148, −5.62869560848996987430579243777, −4.26716324177162205069320005051, −3.44368012399921943526748564184, −2.09545288495577375716758236149, −1.00061971667030243643718911363, 2.27960521838163076910440479858, 3.09585172393795666832028984302, 4.55495391260238007933615446520, 5.86956157698202856330548266161, 6.41357740883560637263961461877, 7.09578820521234431776332984124, 7.79632114020138440770562196174, 8.922713563195981647552494369636, 9.550916300889524162299773992587, 10.45757458626267020735397215383

Graph of the $Z$-function along the critical line