L(s) = 1 | + (−0.309 + 0.951i)2-s − 5-s + (0.809 + 0.587i)7-s + (−0.809 + 0.587i)8-s + (−0.809 + 0.587i)9-s + (0.309 − 0.951i)10-s + (−0.809 + 0.587i)14-s + (−0.309 − 0.951i)16-s + (−0.309 − 0.951i)18-s + (−0.309 + 0.951i)19-s + (−0.809 − 0.587i)35-s + (−0.809 − 0.587i)38-s + (0.809 − 0.587i)40-s + (−0.309 + 0.951i)41-s + (0.809 − 0.587i)45-s + ⋯ |
L(s) = 1 | + (−0.309 + 0.951i)2-s − 5-s + (0.809 + 0.587i)7-s + (−0.809 + 0.587i)8-s + (−0.809 + 0.587i)9-s + (0.309 − 0.951i)10-s + (−0.809 + 0.587i)14-s + (−0.309 − 0.951i)16-s + (−0.309 − 0.951i)18-s + (−0.309 + 0.951i)19-s + (−0.809 − 0.587i)35-s + (−0.809 − 0.587i)38-s + (0.809 − 0.587i)40-s + (−0.309 + 0.951i)41-s + (0.809 − 0.587i)45-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.962 - 0.272i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.962 - 0.272i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6560894341\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6560894341\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 31 | \( 1 \) |
good | 2 | \( 1 + (0.309 - 0.951i)T + (-0.809 - 0.587i)T^{2} \) |
| 3 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 5 | \( 1 + T + T^{2} \) |
| 7 | \( 1 + (-0.809 - 0.587i)T + (0.309 + 0.951i)T^{2} \) |
| 11 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 13 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 17 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (0.309 - 0.951i)T + (-0.809 - 0.587i)T^{2} \) |
| 23 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 29 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (0.309 - 0.951i)T + (-0.809 - 0.587i)T^{2} \) |
| 43 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 47 | \( 1 + (-0.618 - 1.90i)T + (-0.809 + 0.587i)T^{2} \) |
| 53 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 59 | \( 1 + (0.309 + 0.951i)T + (-0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - 2T + T^{2} \) |
| 71 | \( 1 + (-0.809 + 0.587i)T + (0.309 - 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 79 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 89 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 97 | \( 1 + (-0.809 - 0.587i)T + (0.309 + 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.81522494485060276984392642421, −9.457035726204964027110863817371, −8.438107965760562356600835091255, −8.099496555798474236298108412515, −7.54894523631049472777080861732, −6.39132316265927062708174563964, −5.58962474294699969164112923343, −4.70309477190647836673756099552, −3.38262884136449105992825694290, −2.18994136627161153429654453173,
0.67741350491287073570256142602, 2.22380342541582270248557549973, 3.40132014597364513401999463594, 4.15823935514117878179352947406, 5.38459402420678534271156286873, 6.58543501692979862242916410041, 7.39745140265450717735596783736, 8.414329633425062275956077429185, 9.010486739525916978806027062674, 10.06633502658368932509387396743