L(s) = 1 | + (−0.309 − 0.951i)2-s + (0.5 + 0.866i)5-s + (0.104 + 0.994i)7-s + (−0.809 − 0.587i)8-s + (−0.104 + 0.994i)9-s + (0.669 − 0.743i)10-s + (0.913 − 0.406i)14-s + (−0.309 + 0.951i)16-s + (0.978 − 0.207i)18-s + (0.978 + 0.207i)19-s + (−0.809 + 0.587i)35-s + (−0.104 − 0.994i)38-s + (0.104 − 0.994i)40-s + (−0.669 + 0.743i)41-s + (−0.913 + 0.406i)45-s + ⋯ |
L(s) = 1 | + (−0.309 − 0.951i)2-s + (0.5 + 0.866i)5-s + (0.104 + 0.994i)7-s + (−0.809 − 0.587i)8-s + (−0.104 + 0.994i)9-s + (0.669 − 0.743i)10-s + (0.913 − 0.406i)14-s + (−0.309 + 0.951i)16-s + (0.978 − 0.207i)18-s + (0.978 + 0.207i)19-s + (−0.809 + 0.587i)35-s + (−0.104 − 0.994i)38-s + (0.104 − 0.994i)40-s + (−0.669 + 0.743i)41-s + (−0.913 + 0.406i)45-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.957 + 0.289i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.957 + 0.289i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9865745743\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9865745743\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 31 | \( 1 \) |
good | 2 | \( 1 + (0.309 + 0.951i)T + (-0.809 + 0.587i)T^{2} \) |
| 3 | \( 1 + (0.104 - 0.994i)T^{2} \) |
| 5 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 + (-0.104 - 0.994i)T + (-0.978 + 0.207i)T^{2} \) |
| 11 | \( 1 + (-0.669 - 0.743i)T^{2} \) |
| 13 | \( 1 + (-0.913 + 0.406i)T^{2} \) |
| 17 | \( 1 + (-0.669 + 0.743i)T^{2} \) |
| 19 | \( 1 + (-0.978 - 0.207i)T + (0.913 + 0.406i)T^{2} \) |
| 23 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 29 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (0.669 - 0.743i)T + (-0.104 - 0.994i)T^{2} \) |
| 43 | \( 1 + (-0.913 - 0.406i)T^{2} \) |
| 47 | \( 1 + (-0.618 + 1.90i)T + (-0.809 - 0.587i)T^{2} \) |
| 53 | \( 1 + (0.978 + 0.207i)T^{2} \) |
| 59 | \( 1 + (0.669 + 0.743i)T + (-0.104 + 0.994i)T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.104 + 0.994i)T + (-0.978 - 0.207i)T^{2} \) |
| 73 | \( 1 + (-0.669 - 0.743i)T^{2} \) |
| 79 | \( 1 + (-0.669 + 0.743i)T^{2} \) |
| 83 | \( 1 + (0.104 + 0.994i)T^{2} \) |
| 89 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 97 | \( 1 + (-0.809 + 0.587i)T + (0.309 - 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.35389835579596015189860356302, −9.595224126622689643104186512367, −8.797317044673571171596941053426, −7.77676113498101872133535640691, −6.70797445132549001362576746480, −5.88900992284400163046027099508, −5.03694347100179968948026323334, −3.37894128414279609518809411443, −2.55025535752551345783689703886, −1.81280927561202971359910187959,
1.16416891651765383511647796994, 2.97479553097848224677383139969, 4.17877722064208209460311117332, 5.32385709079139253512578492042, 6.06309255620446457537185334063, 7.02873579184618060902886422216, 7.57786653138841494324673148176, 8.641666239748141393632798451856, 9.192080729583873166807871418363, 9.962867339563197034661528410196