Properties

Label 2-31e2-31.11-c0-0-0
Degree $2$
Conductor $961$
Sign $0.957 + 0.289i$
Analytic cond. $0.479601$
Root an. cond. $0.692532$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.309 − 0.951i)2-s + (0.5 + 0.866i)5-s + (0.104 + 0.994i)7-s + (−0.809 − 0.587i)8-s + (−0.104 + 0.994i)9-s + (0.669 − 0.743i)10-s + (0.913 − 0.406i)14-s + (−0.309 + 0.951i)16-s + (0.978 − 0.207i)18-s + (0.978 + 0.207i)19-s + (−0.809 + 0.587i)35-s + (−0.104 − 0.994i)38-s + (0.104 − 0.994i)40-s + (−0.669 + 0.743i)41-s + (−0.913 + 0.406i)45-s + ⋯
L(s)  = 1  + (−0.309 − 0.951i)2-s + (0.5 + 0.866i)5-s + (0.104 + 0.994i)7-s + (−0.809 − 0.587i)8-s + (−0.104 + 0.994i)9-s + (0.669 − 0.743i)10-s + (0.913 − 0.406i)14-s + (−0.309 + 0.951i)16-s + (0.978 − 0.207i)18-s + (0.978 + 0.207i)19-s + (−0.809 + 0.587i)35-s + (−0.104 − 0.994i)38-s + (0.104 − 0.994i)40-s + (−0.669 + 0.743i)41-s + (−0.913 + 0.406i)45-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.957 + 0.289i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.957 + 0.289i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(961\)    =    \(31^{2}\)
Sign: $0.957 + 0.289i$
Analytic conductor: \(0.479601\)
Root analytic conductor: \(0.692532\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{961} (414, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 961,\ (\ :0),\ 0.957 + 0.289i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.9865745743\)
\(L(\frac12)\) \(\approx\) \(0.9865745743\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad31 \( 1 \)
good2 \( 1 + (0.309 + 0.951i)T + (-0.809 + 0.587i)T^{2} \)
3 \( 1 + (0.104 - 0.994i)T^{2} \)
5 \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \)
7 \( 1 + (-0.104 - 0.994i)T + (-0.978 + 0.207i)T^{2} \)
11 \( 1 + (-0.669 - 0.743i)T^{2} \)
13 \( 1 + (-0.913 + 0.406i)T^{2} \)
17 \( 1 + (-0.669 + 0.743i)T^{2} \)
19 \( 1 + (-0.978 - 0.207i)T + (0.913 + 0.406i)T^{2} \)
23 \( 1 + (-0.309 - 0.951i)T^{2} \)
29 \( 1 + (0.809 - 0.587i)T^{2} \)
37 \( 1 + (0.5 + 0.866i)T^{2} \)
41 \( 1 + (0.669 - 0.743i)T + (-0.104 - 0.994i)T^{2} \)
43 \( 1 + (-0.913 - 0.406i)T^{2} \)
47 \( 1 + (-0.618 + 1.90i)T + (-0.809 - 0.587i)T^{2} \)
53 \( 1 + (0.978 + 0.207i)T^{2} \)
59 \( 1 + (0.669 + 0.743i)T + (-0.104 + 0.994i)T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \)
71 \( 1 + (-0.104 + 0.994i)T + (-0.978 - 0.207i)T^{2} \)
73 \( 1 + (-0.669 - 0.743i)T^{2} \)
79 \( 1 + (-0.669 + 0.743i)T^{2} \)
83 \( 1 + (0.104 + 0.994i)T^{2} \)
89 \( 1 + (-0.309 + 0.951i)T^{2} \)
97 \( 1 + (-0.809 + 0.587i)T + (0.309 - 0.951i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.35389835579596015189860356302, −9.595224126622689643104186512367, −8.797317044673571171596941053426, −7.77676113498101872133535640691, −6.70797445132549001362576746480, −5.88900992284400163046027099508, −5.03694347100179968948026323334, −3.37894128414279609518809411443, −2.55025535752551345783689703886, −1.81280927561202971359910187959, 1.16416891651765383511647796994, 2.97479553097848224677383139969, 4.17877722064208209460311117332, 5.32385709079139253512578492042, 6.06309255620446457537185334063, 7.02873579184618060902886422216, 7.57786653138841494324673148176, 8.641666239748141393632798451856, 9.192080729583873166807871418363, 9.962867339563197034661528410196

Graph of the $Z$-function along the critical line