Properties

Label 2-3192-1.1-c1-0-52
Degree $2$
Conductor $3192$
Sign $-1$
Analytic cond. $25.4882$
Root an. cond. $5.04858$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 7-s + 9-s − 1.05·11-s + 3.55·13-s − 4.49·17-s − 19-s − 21-s − 7.43·23-s − 5·25-s + 27-s − 9.55·29-s + 6.61·31-s − 1.05·33-s − 8.61·37-s + 3.55·39-s − 0.117·41-s − 1.88·43-s − 0.941·47-s + 49-s − 4.49·51-s − 2.44·53-s − 57-s + 12.9·59-s + 6.99·61-s − 63-s + 0.824·67-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.377·7-s + 0.333·9-s − 0.319·11-s + 0.986·13-s − 1.09·17-s − 0.229·19-s − 0.218·21-s − 1.55·23-s − 25-s + 0.192·27-s − 1.77·29-s + 1.18·31-s − 0.184·33-s − 1.41·37-s + 0.569·39-s − 0.0183·41-s − 0.287·43-s − 0.137·47-s + 0.142·49-s − 0.629·51-s − 0.335·53-s − 0.132·57-s + 1.69·59-s + 0.895·61-s − 0.125·63-s + 0.100·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3192\)    =    \(2^{3} \cdot 3 \cdot 7 \cdot 19\)
Sign: $-1$
Analytic conductor: \(25.4882\)
Root analytic conductor: \(5.04858\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3192,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 + T \)
19 \( 1 + T \)
good5 \( 1 + 5T^{2} \)
11 \( 1 + 1.05T + 11T^{2} \)
13 \( 1 - 3.55T + 13T^{2} \)
17 \( 1 + 4.49T + 17T^{2} \)
23 \( 1 + 7.43T + 23T^{2} \)
29 \( 1 + 9.55T + 29T^{2} \)
31 \( 1 - 6.61T + 31T^{2} \)
37 \( 1 + 8.61T + 37T^{2} \)
41 \( 1 + 0.117T + 41T^{2} \)
43 \( 1 + 1.88T + 43T^{2} \)
47 \( 1 + 0.941T + 47T^{2} \)
53 \( 1 + 2.44T + 53T^{2} \)
59 \( 1 - 12.9T + 59T^{2} \)
61 \( 1 - 6.99T + 61T^{2} \)
67 \( 1 - 0.824T + 67T^{2} \)
71 \( 1 - 1.43T + 71T^{2} \)
73 \( 1 - 0.117T + 73T^{2} \)
79 \( 1 + 3.67T + 79T^{2} \)
83 \( 1 + 9.67T + 83T^{2} \)
89 \( 1 - 5.11T + 89T^{2} \)
97 \( 1 + 12.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.384009629925221326744658170470, −7.67378433711953986256666906695, −6.77670272815470916751001441231, −6.11561959575964186374835783784, −5.28853088257154114054014988122, −4.06068804146089013802646969735, −3.70443715222408585438457468847, −2.49179577074201826093883513892, −1.70592124437086147635292832874, 0, 1.70592124437086147635292832874, 2.49179577074201826093883513892, 3.70443715222408585438457468847, 4.06068804146089013802646969735, 5.28853088257154114054014988122, 6.11561959575964186374835783784, 6.77670272815470916751001441231, 7.67378433711953986256666906695, 8.384009629925221326744658170470

Graph of the $Z$-function along the critical line