Properties

Label 2-3192-1.1-c1-0-50
Degree $2$
Conductor $3192$
Sign $-1$
Analytic cond. $25.4882$
Root an. cond. $5.04858$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2.73·5-s + 7-s + 9-s − 5.46·13-s − 2.73·15-s − 1.26·17-s − 19-s − 21-s + 2.46·25-s − 27-s − 9.66·29-s + 2·31-s + 2.73·35-s − 10·37-s + 5.46·39-s − 8.92·41-s + 4.92·43-s + 2.73·45-s − 11.6·47-s + 49-s + 1.26·51-s − 6.73·53-s + 57-s + 8·59-s − 2·61-s + 63-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.22·5-s + 0.377·7-s + 0.333·9-s − 1.51·13-s − 0.705·15-s − 0.307·17-s − 0.229·19-s − 0.218·21-s + 0.492·25-s − 0.192·27-s − 1.79·29-s + 0.359·31-s + 0.461·35-s − 1.64·37-s + 0.874·39-s − 1.39·41-s + 0.751·43-s + 0.407·45-s − 1.70·47-s + 0.142·49-s + 0.177·51-s − 0.924·53-s + 0.132·57-s + 1.04·59-s − 0.256·61-s + 0.125·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3192\)    =    \(2^{3} \cdot 3 \cdot 7 \cdot 19\)
Sign: $-1$
Analytic conductor: \(25.4882\)
Root analytic conductor: \(5.04858\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3192,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 - T \)
19 \( 1 + T \)
good5 \( 1 - 2.73T + 5T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 + 5.46T + 13T^{2} \)
17 \( 1 + 1.26T + 17T^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 + 9.66T + 29T^{2} \)
31 \( 1 - 2T + 31T^{2} \)
37 \( 1 + 10T + 37T^{2} \)
41 \( 1 + 8.92T + 41T^{2} \)
43 \( 1 - 4.92T + 43T^{2} \)
47 \( 1 + 11.6T + 47T^{2} \)
53 \( 1 + 6.73T + 53T^{2} \)
59 \( 1 - 8T + 59T^{2} \)
61 \( 1 + 2T + 61T^{2} \)
67 \( 1 + 13.4T + 67T^{2} \)
71 \( 1 - 4.73T + 71T^{2} \)
73 \( 1 - 10.3T + 73T^{2} \)
79 \( 1 - 4T + 79T^{2} \)
83 \( 1 - 10.1T + 83T^{2} \)
89 \( 1 - 4.92T + 89T^{2} \)
97 \( 1 - 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.298109307110716885772338473584, −7.38990802393262026154540378761, −6.74467953239146270778864976808, −5.96050108383078022144209583258, −5.17630396496452879661708451088, −4.78673596878036509175024432651, −3.51852931910054145811193539037, −2.25127277153603816838085760738, −1.68195776420004564847209221213, 0, 1.68195776420004564847209221213, 2.25127277153603816838085760738, 3.51852931910054145811193539037, 4.78673596878036509175024432651, 5.17630396496452879661708451088, 5.96050108383078022144209583258, 6.74467953239146270778864976808, 7.38990802393262026154540378761, 8.298109307110716885772338473584

Graph of the $Z$-function along the critical line