Properties

Label 2-3192-1.1-c1-0-48
Degree $2$
Conductor $3192$
Sign $-1$
Analytic cond. $25.4882$
Root an. cond. $5.04858$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 7-s + 9-s − 5.62·11-s − 2.57·13-s + 6.20·17-s − 19-s − 21-s + 7.83·23-s − 5·25-s + 27-s − 3.42·29-s + 5.04·31-s − 5.62·33-s − 7.04·37-s − 2.57·39-s − 9.25·41-s + 7.25·43-s + 3.62·47-s + 49-s + 6.20·51-s − 8.57·53-s − 57-s − 8.41·59-s − 14.4·61-s − 63-s − 12.8·67-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.377·7-s + 0.333·9-s − 1.69·11-s − 0.715·13-s + 1.50·17-s − 0.229·19-s − 0.218·21-s + 1.63·23-s − 25-s + 0.192·27-s − 0.635·29-s + 0.906·31-s − 0.979·33-s − 1.15·37-s − 0.412·39-s − 1.44·41-s + 1.10·43-s + 0.529·47-s + 0.142·49-s + 0.868·51-s − 1.17·53-s − 0.132·57-s − 1.09·59-s − 1.84·61-s − 0.125·63-s − 1.57·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3192\)    =    \(2^{3} \cdot 3 \cdot 7 \cdot 19\)
Sign: $-1$
Analytic conductor: \(25.4882\)
Root analytic conductor: \(5.04858\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3192,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 + T \)
19 \( 1 + T \)
good5 \( 1 + 5T^{2} \)
11 \( 1 + 5.62T + 11T^{2} \)
13 \( 1 + 2.57T + 13T^{2} \)
17 \( 1 - 6.20T + 17T^{2} \)
23 \( 1 - 7.83T + 23T^{2} \)
29 \( 1 + 3.42T + 29T^{2} \)
31 \( 1 - 5.04T + 31T^{2} \)
37 \( 1 + 7.04T + 37T^{2} \)
41 \( 1 + 9.25T + 41T^{2} \)
43 \( 1 - 7.25T + 43T^{2} \)
47 \( 1 - 3.62T + 47T^{2} \)
53 \( 1 + 8.57T + 53T^{2} \)
59 \( 1 + 8.41T + 59T^{2} \)
61 \( 1 + 14.4T + 61T^{2} \)
67 \( 1 + 12.8T + 67T^{2} \)
71 \( 1 + 13.8T + 71T^{2} \)
73 \( 1 - 9.25T + 73T^{2} \)
79 \( 1 + 6.67T + 79T^{2} \)
83 \( 1 + 12.6T + 83T^{2} \)
89 \( 1 + 7.15T + 89T^{2} \)
97 \( 1 - 4.78T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.164359453464684338015892229815, −7.59861137563680160646433092771, −7.08675817711983935797107690471, −5.88781429319536879421774114884, −5.24247050852249481085549242203, −4.44726954790598706654071024306, −3.14028059375825214603687456599, −2.87256943672115723737366308386, −1.60213031466138144721619213968, 0, 1.60213031466138144721619213968, 2.87256943672115723737366308386, 3.14028059375825214603687456599, 4.44726954790598706654071024306, 5.24247050852249481085549242203, 5.88781429319536879421774114884, 7.08675817711983935797107690471, 7.59861137563680160646433092771, 8.164359453464684338015892229815

Graph of the $Z$-function along the critical line