Properties

Label 2-3192-1.1-c1-0-11
Degree $2$
Conductor $3192$
Sign $1$
Analytic cond. $25.4882$
Root an. cond. $5.04858$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 0.864·5-s − 7-s + 9-s + 3.52·11-s + 4·13-s + 0.864·15-s − 0.864·17-s − 19-s + 21-s + 3.52·23-s − 4.25·25-s − 27-s − 4.38·29-s + 1.52·31-s − 3.52·33-s + 0.864·35-s + 2·37-s − 4·39-s + 10.7·41-s − 5.52·43-s − 0.864·45-s − 6.38·47-s + 49-s + 0.864·51-s − 1.34·53-s − 3.04·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.386·5-s − 0.377·7-s + 0.333·9-s + 1.06·11-s + 1.10·13-s + 0.223·15-s − 0.209·17-s − 0.229·19-s + 0.218·21-s + 0.734·23-s − 0.850·25-s − 0.192·27-s − 0.814·29-s + 0.273·31-s − 0.613·33-s + 0.146·35-s + 0.328·37-s − 0.640·39-s + 1.68·41-s − 0.842·43-s − 0.128·45-s − 0.931·47-s + 0.142·49-s + 0.121·51-s − 0.184·53-s − 0.410·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3192 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3192\)    =    \(2^{3} \cdot 3 \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(25.4882\)
Root analytic conductor: \(5.04858\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3192,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.386604787\)
\(L(\frac12)\) \(\approx\) \(1.386604787\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 + T \)
19 \( 1 + T \)
good5 \( 1 + 0.864T + 5T^{2} \)
11 \( 1 - 3.52T + 11T^{2} \)
13 \( 1 - 4T + 13T^{2} \)
17 \( 1 + 0.864T + 17T^{2} \)
23 \( 1 - 3.52T + 23T^{2} \)
29 \( 1 + 4.38T + 29T^{2} \)
31 \( 1 - 1.52T + 31T^{2} \)
37 \( 1 - 2T + 37T^{2} \)
41 \( 1 - 10.7T + 41T^{2} \)
43 \( 1 + 5.52T + 43T^{2} \)
47 \( 1 + 6.38T + 47T^{2} \)
53 \( 1 + 1.34T + 53T^{2} \)
59 \( 1 + 10.5T + 59T^{2} \)
61 \( 1 - 12.5T + 61T^{2} \)
67 \( 1 + 3.52T + 67T^{2} \)
71 \( 1 + 4.11T + 71T^{2} \)
73 \( 1 - 14.7T + 73T^{2} \)
79 \( 1 + 5.25T + 79T^{2} \)
83 \( 1 - 8.11T + 83T^{2} \)
89 \( 1 + 6.77T + 89T^{2} \)
97 \( 1 - 15.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.744468297372415125513352639630, −7.88317942641693012488783809610, −7.06296056686310212041801342550, −6.31199051359271210012986130471, −5.86627081615606313954444557162, −4.73925092924410617821929570878, −3.95587404589981668193774263159, −3.30757105671798526735996101808, −1.86302393491333755449469799399, −0.74904572332696076940314921049, 0.74904572332696076940314921049, 1.86302393491333755449469799399, 3.30757105671798526735996101808, 3.95587404589981668193774263159, 4.73925092924410617821929570878, 5.86627081615606313954444557162, 6.31199051359271210012986130471, 7.06296056686310212041801342550, 7.88317942641693012488783809610, 8.744468297372415125513352639630

Graph of the $Z$-function along the critical line