L(s) = 1 | + (1.5 + 2.59i)2-s + (−0.5 + 0.866i)4-s + (2.5 + 4.33i)5-s + (−14 − 12.1i)7-s + 21·8-s + (−7.50 + 12.9i)10-s + (−22.5 + 38.9i)11-s + 59·13-s + (10.5 − 54.5i)14-s + (35.5 + 61.4i)16-s + (−27 + 46.7i)17-s + (60.5 + 104. i)19-s − 5.00·20-s − 135·22-s + (34.5 + 59.7i)23-s + ⋯ |
L(s) = 1 | + (0.530 + 0.918i)2-s + (−0.0625 + 0.108i)4-s + (0.223 + 0.387i)5-s + (−0.755 − 0.654i)7-s + 0.928·8-s + (−0.237 + 0.410i)10-s + (−0.616 + 1.06i)11-s + 1.25·13-s + (0.200 − 1.04i)14-s + (0.554 + 0.960i)16-s + (−0.385 + 0.667i)17-s + (0.730 + 1.26i)19-s − 0.0559·20-s − 1.30·22-s + (0.312 + 0.541i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.266 - 0.963i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.266 - 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.565231348\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.565231348\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-2.5 - 4.33i)T \) |
| 7 | \( 1 + (14 + 12.1i)T \) |
good | 2 | \( 1 + (-1.5 - 2.59i)T + (-4 + 6.92i)T^{2} \) |
| 11 | \( 1 + (22.5 - 38.9i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 - 59T + 2.19e3T^{2} \) |
| 17 | \( 1 + (27 - 46.7i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-60.5 - 104. i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-34.5 - 59.7i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 - 162T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-44 + 76.2i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-129.5 - 224. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + 195T + 6.89e4T^{2} \) |
| 43 | \( 1 + 286T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-22.5 - 38.9i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-298.5 + 517. i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (180 - 311. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (196 + 339. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-140 + 242. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + 48T + 3.57e5T^{2} \) |
| 73 | \( 1 + (334 - 578. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (391 + 677. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + 768T + 5.71e5T^{2} \) |
| 89 | \( 1 + (597 + 1.03e3i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 - 902T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.45344480480780197432930795485, −10.24593016683928950709509079292, −10.01902761669125130777651336784, −8.326285987154752918201541311503, −7.37064360620068434728858112806, −6.54002760955191148778777047398, −5.81579668198679918505871562914, −4.55306617318921454797785601829, −3.41299952749232803619568782947, −1.54048225601424233423591348144,
0.847173441393604463168246249048, 2.59826281106166696326709631854, 3.30621967978097006843078618470, 4.72263679836319394521660015244, 5.78033631631063722413968915196, 6.93323746119566942113684055361, 8.382529561121609237670508893506, 9.090601050003599218191008792564, 10.30637304654184457781532351652, 11.15339304792633964524612685775