Properties

Label 2-315-35.34-c4-0-44
Degree $2$
Conductor $315$
Sign $1$
Analytic cond. $32.5615$
Root an. cond. $5.70627$
Motivic weight $4$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 16·4-s + 25·5-s − 49·7-s + 73·11-s − 23·13-s + 256·16-s + 263·17-s + 400·20-s + 625·25-s − 784·28-s + 1.15e3·29-s − 1.22e3·35-s + 1.16e3·44-s − 3.45e3·47-s + 2.40e3·49-s − 368·52-s + 1.82e3·55-s + 4.09e3·64-s − 575·65-s + 4.20e3·68-s + 1.00e4·71-s + 9.50e3·73-s − 3.57e3·77-s + 1.21e4·79-s + 6.40e3·80-s − 6.38e3·83-s + 6.57e3·85-s + ⋯
L(s)  = 1  + 4-s + 5-s − 7-s + 0.603·11-s − 0.136·13-s + 16-s + 0.910·17-s + 20-s + 25-s − 28-s + 1.37·29-s − 35-s + 0.603·44-s − 1.56·47-s + 49-s − 0.136·52-s + 0.603·55-s + 64-s − 0.136·65-s + 0.910·68-s + 1.99·71-s + 1.78·73-s − 0.603·77-s + 1.94·79-s + 80-s − 0.926·83-s + 0.910·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(315\)    =    \(3^{2} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(32.5615\)
Root analytic conductor: \(5.70627\)
Motivic weight: \(4\)
Rational: yes
Arithmetic: yes
Character: $\chi_{315} (244, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 315,\ (\ :2),\ 1)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(3.023776018\)
\(L(\frac12)\) \(\approx\) \(3.023776018\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - p^{2} T \)
7 \( 1 + p^{2} T \)
good2 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
11 \( 1 - 73 T + p^{4} T^{2} \)
13 \( 1 + 23 T + p^{4} T^{2} \)
17 \( 1 - 263 T + p^{4} T^{2} \)
19 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
23 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
29 \( 1 - 1153 T + p^{4} T^{2} \)
31 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
37 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
41 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
43 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
47 \( 1 + 3457 T + p^{4} T^{2} \)
53 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
59 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
61 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
67 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
71 \( 1 - 10078 T + p^{4} T^{2} \)
73 \( 1 - 9502 T + p^{4} T^{2} \)
79 \( 1 - 12167 T + p^{4} T^{2} \)
83 \( 1 + 6382 T + p^{4} T^{2} \)
89 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
97 \( 1 + 3383 T + p^{4} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.90727281188623126209078062031, −10.02167324635198187947274643445, −9.452553622857044050523915139297, −8.117164459554557883416801561379, −6.77870098325526192159847564067, −6.35352979342973832824196640061, −5.27856527695171052019033031417, −3.47061394966558839380758885103, −2.45932937843407106308840415054, −1.13848213976879026999663938709, 1.13848213976879026999663938709, 2.45932937843407106308840415054, 3.47061394966558839380758885103, 5.27856527695171052019033031417, 6.35352979342973832824196640061, 6.77870098325526192159847564067, 8.117164459554557883416801561379, 9.452553622857044050523915139297, 10.02167324635198187947274643445, 10.90727281188623126209078062031

Graph of the $Z$-function along the critical line