| L(s) = 1 | + (−0.364 − 1.36i)2-s + (0.0145 − 0.00842i)4-s + (−2.23 + 0.0163i)5-s + (−2.58 + 0.573i)7-s + (−2.00 − 2.00i)8-s + (0.837 + 3.03i)10-s + (−1.18 + 0.681i)11-s + (0.106 − 0.106i)13-s + (1.72 + 3.30i)14-s + (−1.98 + 3.43i)16-s + (−7.24 − 1.94i)17-s + (−2.03 − 1.17i)19-s + (−0.0324 + 0.0190i)20-s + (1.35 + 1.35i)22-s + (4.94 − 1.32i)23-s + ⋯ |
| L(s) = 1 | + (−0.257 − 0.961i)2-s + (0.00729 − 0.00421i)4-s + (−0.999 + 0.00732i)5-s + (−0.976 + 0.216i)7-s + (−0.710 − 0.710i)8-s + (0.264 + 0.959i)10-s + (−0.355 + 0.205i)11-s + (0.0294 − 0.0294i)13-s + (0.460 + 0.883i)14-s + (−0.495 + 0.858i)16-s + (−1.75 − 0.471i)17-s + (−0.465 − 0.269i)19-s + (−0.00726 + 0.00426i)20-s + (0.289 + 0.289i)22-s + (1.03 − 0.276i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.804 - 0.594i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.804 - 0.594i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.100559 + 0.305421i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.100559 + 0.305421i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 + (2.23 - 0.0163i)T \) |
| 7 | \( 1 + (2.58 - 0.573i)T \) |
| good | 2 | \( 1 + (0.364 + 1.36i)T + (-1.73 + i)T^{2} \) |
| 11 | \( 1 + (1.18 - 0.681i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.106 + 0.106i)T - 13iT^{2} \) |
| 17 | \( 1 + (7.24 + 1.94i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (2.03 + 1.17i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-4.94 + 1.32i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 - 4.97T + 29T^{2} \) |
| 31 | \( 1 + (3.40 + 5.89i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (9.92 - 2.65i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 - 7.03iT - 41T^{2} \) |
| 43 | \( 1 + (-2.50 + 2.50i)T - 43iT^{2} \) |
| 47 | \( 1 + (-0.560 - 2.09i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (-1.62 + 6.06i)T + (-45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (-1.32 - 2.29i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.85 + 10.1i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.16 + 11.8i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + 4.94iT - 71T^{2} \) |
| 73 | \( 1 + (5.43 + 1.45i)T + (63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (10.4 + 6.05i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (8.06 + 8.06i)T + 83iT^{2} \) |
| 89 | \( 1 + (-1.38 + 2.39i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-3.68 - 3.68i)T + 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.11296917759680098044002602897, −10.40548517731676037645228511578, −9.312057687277175976909868705810, −8.597257629231255198297990448868, −7.09103530563830926809525530247, −6.43273359054750906504144178859, −4.69636952167774050141223932343, −3.43206119729807716108727077900, −2.42551801371653663899637362049, −0.23181204626085657830739335129,
2.83032149208263346282249475888, 4.08931237304479237585515114388, 5.54098899420805640363049498595, 6.88168275329601872433308935951, 7.06880480143323275535078109704, 8.532260592609389859362554698025, 8.848684253964631171248593677255, 10.46650110592290134432643755122, 11.20664745665309659645575269076, 12.29474745386682904963963682967