| L(s) = 1 | + (−0.0991 − 0.370i)2-s + (1.60 − 0.926i)4-s + (1.78 − 1.34i)5-s + (2.39 − 1.13i)7-s + (−1.04 − 1.04i)8-s + (−0.673 − 0.529i)10-s + (−3.48 + 2.01i)11-s + (−2.94 + 2.94i)13-s + (−0.656 − 0.772i)14-s + (1.57 − 2.71i)16-s + (−1.90 − 0.510i)17-s + (3.06 + 1.77i)19-s + (1.62 − 3.81i)20-s + (1.09 + 1.09i)22-s + (−1.74 + 0.467i)23-s + ⋯ |
| L(s) = 1 | + (−0.0701 − 0.261i)2-s + (0.802 − 0.463i)4-s + (0.800 − 0.599i)5-s + (0.903 − 0.427i)7-s + (−0.369 − 0.369i)8-s + (−0.213 − 0.167i)10-s + (−1.05 + 0.606i)11-s + (−0.815 + 0.815i)13-s + (−0.175 − 0.206i)14-s + (0.392 − 0.679i)16-s + (−0.462 − 0.123i)17-s + (0.703 + 0.406i)19-s + (0.364 − 0.851i)20-s + (0.232 + 0.232i)22-s + (−0.363 + 0.0974i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.533 + 0.845i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.533 + 0.845i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.47612 - 0.813772i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.47612 - 0.813772i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 + (-1.78 + 1.34i)T \) |
| 7 | \( 1 + (-2.39 + 1.13i)T \) |
| good | 2 | \( 1 + (0.0991 + 0.370i)T + (-1.73 + i)T^{2} \) |
| 11 | \( 1 + (3.48 - 2.01i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (2.94 - 2.94i)T - 13iT^{2} \) |
| 17 | \( 1 + (1.90 + 0.510i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (-3.06 - 1.77i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.74 - 0.467i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 - 7.33T + 29T^{2} \) |
| 31 | \( 1 + (-1.20 - 2.08i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (8.29 - 2.22i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 - 5.20iT - 41T^{2} \) |
| 43 | \( 1 + (1.29 - 1.29i)T - 43iT^{2} \) |
| 47 | \( 1 + (-0.286 - 1.06i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (-2.89 + 10.7i)T + (-45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (-7.20 - 12.4i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (2.48 - 4.30i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (1.59 - 5.94i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + 1.99iT - 71T^{2} \) |
| 73 | \( 1 + (12.5 + 3.35i)T + (63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (12.9 + 7.47i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-11.2 - 11.2i)T + 83iT^{2} \) |
| 89 | \( 1 + (-4.22 + 7.31i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-4.46 - 4.46i)T + 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.61905310499701233226139539173, −10.22475967574674223060618937404, −10.12695469428107998878664338580, −8.775589630046916488850724889457, −7.59619363150255780200639557560, −6.68711405009929441386082775224, −5.38116106960755564287995484430, −4.64410265537552546462716263129, −2.53601484608829805574004729761, −1.50811148723297147777306767816,
2.21387317527355911170483025043, 3.02847063097410395674319930511, 5.11332780251907990301708107589, 5.89050131564467145905903558558, 7.07362119206095171717932064925, 7.899151886358443541808913829818, 8.773112665804411334155309790637, 10.22140462337519789790278416026, 10.80817949240338665569586186345, 11.73348302372762227057891341073