Properties

Label 2-315-1.1-c9-0-55
Degree $2$
Conductor $315$
Sign $-1$
Analytic cond. $162.236$
Root an. cond. $12.7372$
Motivic weight $9$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 28·2-s + 272·4-s − 625·5-s + 2.40e3·7-s + 6.72e3·8-s + 1.75e4·10-s + 2.55e4·11-s − 4.23e4·13-s − 6.72e4·14-s − 3.27e5·16-s + 5.26e5·17-s − 3.50e5·19-s − 1.70e5·20-s − 7.15e5·22-s + 6.21e5·23-s + 3.90e5·25-s + 1.18e6·26-s + 6.53e5·28-s − 6.72e6·29-s − 6.41e6·31-s + 5.72e6·32-s − 1.47e7·34-s − 1.50e6·35-s − 2.31e6·37-s + 9.80e6·38-s − 4.20e6·40-s + 1.02e7·41-s + ⋯
L(s)  = 1  − 1.23·2-s + 0.531·4-s − 0.447·5-s + 0.377·7-s + 0.580·8-s + 0.553·10-s + 0.526·11-s − 0.410·13-s − 0.467·14-s − 1.24·16-s + 1.52·17-s − 0.616·19-s − 0.237·20-s − 0.651·22-s + 0.463·23-s + 1/5·25-s + 0.508·26-s + 0.200·28-s − 1.76·29-s − 1.24·31-s + 0.965·32-s − 1.89·34-s − 0.169·35-s − 0.203·37-s + 0.762·38-s − 0.259·40-s + 0.565·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(315\)    =    \(3^{2} \cdot 5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(162.236\)
Root analytic conductor: \(12.7372\)
Motivic weight: \(9\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 315,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + p^{4} T \)
7 \( 1 - p^{4} T \)
good2 \( 1 + 7 p^{2} T + p^{9} T^{2} \)
11 \( 1 - 25548 T + p^{9} T^{2} \)
13 \( 1 + 42306 T + p^{9} T^{2} \)
17 \( 1 - 526342 T + p^{9} T^{2} \)
19 \( 1 + 350060 T + p^{9} T^{2} \)
23 \( 1 - 621976 T + p^{9} T^{2} \)
29 \( 1 + 6720430 T + p^{9} T^{2} \)
31 \( 1 + 6412208 T + p^{9} T^{2} \)
37 \( 1 + 2317682 T + p^{9} T^{2} \)
41 \( 1 - 10224678 T + p^{9} T^{2} \)
43 \( 1 - 30114004 T + p^{9} T^{2} \)
47 \( 1 - 23644912 T + p^{9} T^{2} \)
53 \( 1 + 57292654 T + p^{9} T^{2} \)
59 \( 1 + 84934780 T + p^{9} T^{2} \)
61 \( 1 - 14677822 T + p^{9} T^{2} \)
67 \( 1 + 244557812 T + p^{9} T^{2} \)
71 \( 1 + 61901952 T + p^{9} T^{2} \)
73 \( 1 + 283763726 T + p^{9} T^{2} \)
79 \( 1 - 276107480 T + p^{9} T^{2} \)
83 \( 1 - 72995956 T + p^{9} T^{2} \)
89 \( 1 - 896368470 T + p^{9} T^{2} \)
97 \( 1 - 1205809578 T + p^{9} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.404771263085838417905178526998, −8.872427111204542955347259497024, −7.63206021694307665387544518714, −7.41601129980399181310200520151, −5.85965583992689161014928932673, −4.63045087895949411261022765138, −3.53159801677237339550128920219, −1.98156695498797073920329929876, −1.02891164141647243395747791602, 0, 1.02891164141647243395747791602, 1.98156695498797073920329929876, 3.53159801677237339550128920219, 4.63045087895949411261022765138, 5.85965583992689161014928932673, 7.41601129980399181310200520151, 7.63206021694307665387544518714, 8.872427111204542955347259497024, 9.404771263085838417905178526998

Graph of the $Z$-function along the critical line