Properties

Label 2-315-1.1-c9-0-31
Degree $2$
Conductor $315$
Sign $1$
Analytic cond. $162.236$
Root an. cond. $12.7372$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 39.8·2-s + 1.07e3·4-s − 625·5-s − 2.40e3·7-s − 2.24e4·8-s + 2.48e4·10-s + 5.04e4·11-s + 3.92e3·13-s + 9.56e4·14-s + 3.42e5·16-s + 5.89e5·17-s + 7.96e5·19-s − 6.71e5·20-s − 2.00e6·22-s + 4.36e5·23-s + 3.90e5·25-s − 1.56e5·26-s − 2.57e6·28-s − 1.20e6·29-s + 3.38e6·31-s − 2.15e6·32-s − 2.34e7·34-s + 1.50e6·35-s + 1.70e7·37-s − 3.17e7·38-s + 1.40e7·40-s − 2.58e7·41-s + ⋯
L(s)  = 1  − 1.76·2-s + 2.09·4-s − 0.447·5-s − 0.377·7-s − 1.93·8-s + 0.787·10-s + 1.03·11-s + 0.0380·13-s + 0.665·14-s + 1.30·16-s + 1.71·17-s + 1.40·19-s − 0.938·20-s − 1.82·22-s + 0.325·23-s + 0.200·25-s − 0.0670·26-s − 0.793·28-s − 0.317·29-s + 0.658·31-s − 0.363·32-s − 3.01·34-s + 0.169·35-s + 1.49·37-s − 2.46·38-s + 0.864·40-s − 1.42·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(315\)    =    \(3^{2} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(162.236\)
Root analytic conductor: \(12.7372\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 315,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(1.141916296\)
\(L(\frac12)\) \(\approx\) \(1.141916296\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + 625T \)
7 \( 1 + 2.40e3T \)
good2 \( 1 + 39.8T + 512T^{2} \)
11 \( 1 - 5.04e4T + 2.35e9T^{2} \)
13 \( 1 - 3.92e3T + 1.06e10T^{2} \)
17 \( 1 - 5.89e5T + 1.18e11T^{2} \)
19 \( 1 - 7.96e5T + 3.22e11T^{2} \)
23 \( 1 - 4.36e5T + 1.80e12T^{2} \)
29 \( 1 + 1.20e6T + 1.45e13T^{2} \)
31 \( 1 - 3.38e6T + 2.64e13T^{2} \)
37 \( 1 - 1.70e7T + 1.29e14T^{2} \)
41 \( 1 + 2.58e7T + 3.27e14T^{2} \)
43 \( 1 - 1.44e7T + 5.02e14T^{2} \)
47 \( 1 - 5.55e7T + 1.11e15T^{2} \)
53 \( 1 - 7.67e7T + 3.29e15T^{2} \)
59 \( 1 - 1.15e8T + 8.66e15T^{2} \)
61 \( 1 + 1.54e8T + 1.16e16T^{2} \)
67 \( 1 - 2.72e8T + 2.72e16T^{2} \)
71 \( 1 - 2.24e7T + 4.58e16T^{2} \)
73 \( 1 + 8.21e6T + 5.88e16T^{2} \)
79 \( 1 - 5.20e8T + 1.19e17T^{2} \)
83 \( 1 + 9.36e7T + 1.86e17T^{2} \)
89 \( 1 + 1.94e8T + 3.50e17T^{2} \)
97 \( 1 - 1.48e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.777497877140501812242607495740, −9.333069101058743249490228358483, −8.265400021460382645306949699131, −7.50572750572702411865375233654, −6.73892153935664579780617888258, −5.56821154369108649396167391361, −3.78550401374780978299405977893, −2.72079265643569120408344425740, −1.22219382139851094785246223616, −0.74095438456204885821495939586, 0.74095438456204885821495939586, 1.22219382139851094785246223616, 2.72079265643569120408344425740, 3.78550401374780978299405977893, 5.56821154369108649396167391361, 6.73892153935664579780617888258, 7.50572750572702411865375233654, 8.265400021460382645306949699131, 9.333069101058743249490228358483, 9.777497877140501812242607495740

Graph of the $Z$-function along the critical line