Properties

Label 2-315-1.1-c9-0-30
Degree $2$
Conductor $315$
Sign $1$
Analytic cond. $162.236$
Root an. cond. $12.7372$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 22.7·2-s + 6.29·4-s + 625·5-s + 2.40e3·7-s + 1.15e4·8-s − 1.42e4·10-s + 2.12e4·11-s + 4.73e4·13-s − 5.46e4·14-s − 2.65e5·16-s − 5.69e5·17-s + 1.08e6·19-s + 3.93e3·20-s − 4.83e5·22-s + 1.34e6·23-s + 3.90e5·25-s − 1.07e6·26-s + 1.51e4·28-s + 6.23e6·29-s − 4.13e5·31-s + 1.45e5·32-s + 1.29e7·34-s + 1.50e6·35-s + 1.28e7·37-s − 2.48e7·38-s + 7.19e6·40-s − 3.90e6·41-s + ⋯
L(s)  = 1  − 1.00·2-s + 0.0122·4-s + 0.447·5-s + 0.377·7-s + 0.993·8-s − 0.449·10-s + 0.437·11-s + 0.460·13-s − 0.380·14-s − 1.01·16-s − 1.65·17-s + 1.91·19-s + 0.00550·20-s − 0.439·22-s + 1.00·23-s + 0.200·25-s − 0.463·26-s + 0.00464·28-s + 1.63·29-s − 0.0804·31-s + 0.0245·32-s + 1.66·34-s + 0.169·35-s + 1.12·37-s − 1.92·38-s + 0.444·40-s − 0.215·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(315\)    =    \(3^{2} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(162.236\)
Root analytic conductor: \(12.7372\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 315,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(1.644331032\)
\(L(\frac12)\) \(\approx\) \(1.644331032\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - 625T \)
7 \( 1 - 2.40e3T \)
good2 \( 1 + 22.7T + 512T^{2} \)
11 \( 1 - 2.12e4T + 2.35e9T^{2} \)
13 \( 1 - 4.73e4T + 1.06e10T^{2} \)
17 \( 1 + 5.69e5T + 1.18e11T^{2} \)
19 \( 1 - 1.08e6T + 3.22e11T^{2} \)
23 \( 1 - 1.34e6T + 1.80e12T^{2} \)
29 \( 1 - 6.23e6T + 1.45e13T^{2} \)
31 \( 1 + 4.13e5T + 2.64e13T^{2} \)
37 \( 1 - 1.28e7T + 1.29e14T^{2} \)
41 \( 1 + 3.90e6T + 3.27e14T^{2} \)
43 \( 1 - 1.27e7T + 5.02e14T^{2} \)
47 \( 1 - 3.61e7T + 1.11e15T^{2} \)
53 \( 1 + 1.10e8T + 3.29e15T^{2} \)
59 \( 1 - 8.68e6T + 8.66e15T^{2} \)
61 \( 1 - 1.06e8T + 1.16e16T^{2} \)
67 \( 1 - 1.89e8T + 2.72e16T^{2} \)
71 \( 1 + 9.10e7T + 4.58e16T^{2} \)
73 \( 1 + 9.84e7T + 5.88e16T^{2} \)
79 \( 1 + 2.41e8T + 1.19e17T^{2} \)
83 \( 1 + 4.28e8T + 1.86e17T^{2} \)
89 \( 1 + 5.29e7T + 3.50e17T^{2} \)
97 \( 1 - 3.01e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.862482236982991655808464322603, −9.147200662194956688007916594442, −8.477489650228658856168890621825, −7.42104388028095596497692580401, −6.50611186426605941081963230154, −5.16121767966419257553177566298, −4.25567832939604624265446161751, −2.72871894271178897455531388988, −1.43211930527215041113664991390, −0.73894454603894110129504733716, 0.73894454603894110129504733716, 1.43211930527215041113664991390, 2.72871894271178897455531388988, 4.25567832939604624265446161751, 5.16121767966419257553177566298, 6.50611186426605941081963230154, 7.42104388028095596497692580401, 8.477489650228658856168890621825, 9.147200662194956688007916594442, 9.862482236982991655808464322603

Graph of the $Z$-function along the critical line