Properties

Label 2-315-1.1-c9-0-21
Degree $2$
Conductor $315$
Sign $1$
Analytic cond. $162.236$
Root an. cond. $12.7372$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.68·2-s − 490.·4-s + 625·5-s + 2.40e3·7-s + 4.69e3·8-s − 2.92e3·10-s − 6.12e4·11-s + 1.27e5·13-s − 1.12e4·14-s + 2.28e5·16-s + 3.74e5·17-s + 3.51e5·19-s − 3.06e5·20-s + 2.86e5·22-s − 1.55e6·23-s + 3.90e5·25-s − 5.98e5·26-s − 1.17e6·28-s − 3.12e6·29-s + 6.54e6·31-s − 3.47e6·32-s − 1.75e6·34-s + 1.50e6·35-s − 9.25e6·37-s − 1.64e6·38-s + 2.93e6·40-s + 8.05e6·41-s + ⋯
L(s)  = 1  − 0.206·2-s − 0.957·4-s + 0.447·5-s + 0.377·7-s + 0.404·8-s − 0.0925·10-s − 1.26·11-s + 1.24·13-s − 0.0781·14-s + 0.873·16-s + 1.08·17-s + 0.618·19-s − 0.428·20-s + 0.261·22-s − 1.16·23-s + 0.200·25-s − 0.256·26-s − 0.361·28-s − 0.821·29-s + 1.27·31-s − 0.585·32-s − 0.224·34-s + 0.169·35-s − 0.812·37-s − 0.127·38-s + 0.181·40-s + 0.444·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(315\)    =    \(3^{2} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(162.236\)
Root analytic conductor: \(12.7372\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 315,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(1.724852850\)
\(L(\frac12)\) \(\approx\) \(1.724852850\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - 625T \)
7 \( 1 - 2.40e3T \)
good2 \( 1 + 4.68T + 512T^{2} \)
11 \( 1 + 6.12e4T + 2.35e9T^{2} \)
13 \( 1 - 1.27e5T + 1.06e10T^{2} \)
17 \( 1 - 3.74e5T + 1.18e11T^{2} \)
19 \( 1 - 3.51e5T + 3.22e11T^{2} \)
23 \( 1 + 1.55e6T + 1.80e12T^{2} \)
29 \( 1 + 3.12e6T + 1.45e13T^{2} \)
31 \( 1 - 6.54e6T + 2.64e13T^{2} \)
37 \( 1 + 9.25e6T + 1.29e14T^{2} \)
41 \( 1 - 8.05e6T + 3.27e14T^{2} \)
43 \( 1 - 1.58e7T + 5.02e14T^{2} \)
47 \( 1 - 8.88e6T + 1.11e15T^{2} \)
53 \( 1 - 5.68e7T + 3.29e15T^{2} \)
59 \( 1 + 8.14e7T + 8.66e15T^{2} \)
61 \( 1 + 2.04e8T + 1.16e16T^{2} \)
67 \( 1 - 8.88e7T + 2.72e16T^{2} \)
71 \( 1 + 2.24e8T + 4.58e16T^{2} \)
73 \( 1 - 1.91e8T + 5.88e16T^{2} \)
79 \( 1 - 2.39e7T + 1.19e17T^{2} \)
83 \( 1 + 4.05e8T + 1.86e17T^{2} \)
89 \( 1 + 2.03e8T + 3.50e17T^{2} \)
97 \( 1 - 9.77e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.11681359706931137898124665035, −9.167752852212856891568976168669, −8.202470145604091148337384000018, −7.61856396061878984129642220851, −5.93303889426378193938195701163, −5.32428738747807592715270538774, −4.18771062113447505601598990517, −3.06990573541549945708675248060, −1.61870746603028050587192357780, −0.62783666133123237192773690870, 0.62783666133123237192773690870, 1.61870746603028050587192357780, 3.06990573541549945708675248060, 4.18771062113447505601598990517, 5.32428738747807592715270538774, 5.93303889426378193938195701163, 7.61856396061878984129642220851, 8.202470145604091148337384000018, 9.167752852212856891568976168669, 10.11681359706931137898124665035

Graph of the $Z$-function along the critical line