Properties

Label 2-315-1.1-c7-0-31
Degree $2$
Conductor $315$
Sign $-1$
Analytic cond. $98.4012$
Root an. cond. $9.91974$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 20.3·2-s + 286.·4-s − 125·5-s − 343·7-s − 3.23e3·8-s + 2.54e3·10-s − 3.07e3·11-s + 208.·13-s + 6.98e3·14-s + 2.90e4·16-s − 9.53e3·17-s + 2.87e4·19-s − 3.58e4·20-s + 6.25e4·22-s + 5.94e4·23-s + 1.56e4·25-s − 4.25e3·26-s − 9.83e4·28-s − 8.18e3·29-s − 1.30e5·31-s − 1.78e5·32-s + 1.94e5·34-s + 4.28e4·35-s − 2.79e5·37-s − 5.84e5·38-s + 4.03e5·40-s + 3.49e5·41-s + ⋯
L(s)  = 1  − 1.79·2-s + 2.23·4-s − 0.447·5-s − 0.377·7-s − 2.23·8-s + 0.804·10-s − 0.695·11-s + 0.0263·13-s + 0.680·14-s + 1.77·16-s − 0.470·17-s + 0.960·19-s − 1.00·20-s + 1.25·22-s + 1.01·23-s + 0.199·25-s − 0.0474·26-s − 0.846·28-s − 0.0623·29-s − 0.788·31-s − 0.964·32-s + 0.847·34-s + 0.169·35-s − 0.908·37-s − 1.72·38-s + 0.997·40-s + 0.791·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(315\)    =    \(3^{2} \cdot 5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(98.4012\)
Root analytic conductor: \(9.91974\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 315,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + 125T \)
7 \( 1 + 343T \)
good2 \( 1 + 20.3T + 128T^{2} \)
11 \( 1 + 3.07e3T + 1.94e7T^{2} \)
13 \( 1 - 208.T + 6.27e7T^{2} \)
17 \( 1 + 9.53e3T + 4.10e8T^{2} \)
19 \( 1 - 2.87e4T + 8.93e8T^{2} \)
23 \( 1 - 5.94e4T + 3.40e9T^{2} \)
29 \( 1 + 8.18e3T + 1.72e10T^{2} \)
31 \( 1 + 1.30e5T + 2.75e10T^{2} \)
37 \( 1 + 2.79e5T + 9.49e10T^{2} \)
41 \( 1 - 3.49e5T + 1.94e11T^{2} \)
43 \( 1 - 4.72e4T + 2.71e11T^{2} \)
47 \( 1 + 1.10e6T + 5.06e11T^{2} \)
53 \( 1 - 1.63e5T + 1.17e12T^{2} \)
59 \( 1 - 3.06e6T + 2.48e12T^{2} \)
61 \( 1 + 1.77e5T + 3.14e12T^{2} \)
67 \( 1 + 2.43e6T + 6.06e12T^{2} \)
71 \( 1 - 4.41e6T + 9.09e12T^{2} \)
73 \( 1 - 5.64e6T + 1.10e13T^{2} \)
79 \( 1 - 5.62e6T + 1.92e13T^{2} \)
83 \( 1 + 2.38e6T + 2.71e13T^{2} \)
89 \( 1 - 1.04e7T + 4.42e13T^{2} \)
97 \( 1 + 6.06e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.806456686826811870558725589896, −9.077867571853383537477842744356, −8.185369090143779743039298296650, −7.37161657174663007921444155895, −6.61975226839881070077700598918, −5.21405397770189648553661250253, −3.39757500975577929141339328057, −2.27726281073138559322683620191, −0.962903306205940770838282234545, 0, 0.962903306205940770838282234545, 2.27726281073138559322683620191, 3.39757500975577929141339328057, 5.21405397770189648553661250253, 6.61975226839881070077700598918, 7.37161657174663007921444155895, 8.185369090143779743039298296650, 9.077867571853383537477842744356, 9.806456686826811870558725589896

Graph of the $Z$-function along the critical line