Properties

Label 2-315-1.1-c5-0-45
Degree $2$
Conductor $315$
Sign $-1$
Analytic cond. $50.5209$
Root an. cond. $7.10780$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s + 32·4-s − 25·5-s + 49·7-s − 200·10-s + 453·11-s − 969·13-s + 392·14-s − 1.02e3·16-s − 1.63e3·17-s − 1.55e3·19-s − 800·20-s + 3.62e3·22-s + 1.65e3·23-s + 625·25-s − 7.75e3·26-s + 1.56e3·28-s + 4.98e3·29-s + 1.19e3·31-s − 8.19e3·32-s − 1.30e4·34-s − 1.22e3·35-s − 1.10e4·37-s − 1.24e4·38-s + 1.72e3·41-s − 1.08e4·43-s + 1.44e4·44-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s − 0.447·5-s + 0.377·7-s − 0.632·10-s + 1.12·11-s − 1.59·13-s + 0.534·14-s − 16-s − 1.37·17-s − 0.985·19-s − 0.447·20-s + 1.59·22-s + 0.651·23-s + 1/5·25-s − 2.24·26-s + 0.377·28-s + 1.10·29-s + 0.222·31-s − 1.41·32-s − 1.94·34-s − 0.169·35-s − 1.32·37-s − 1.39·38-s + 0.160·41-s − 0.891·43-s + 1.12·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(315\)    =    \(3^{2} \cdot 5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(50.5209\)
Root analytic conductor: \(7.10780\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 315,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + p^{2} T \)
7 \( 1 - p^{2} T \)
good2 \( 1 - p^{3} T + p^{5} T^{2} \)
11 \( 1 - 453 T + p^{5} T^{2} \)
13 \( 1 + 969 T + p^{5} T^{2} \)
17 \( 1 + 1637 T + p^{5} T^{2} \)
19 \( 1 + 1550 T + p^{5} T^{2} \)
23 \( 1 - 1654 T + p^{5} T^{2} \)
29 \( 1 - 4985 T + p^{5} T^{2} \)
31 \( 1 - 1192 T + p^{5} T^{2} \)
37 \( 1 + 11018 T + p^{5} T^{2} \)
41 \( 1 - 1728 T + p^{5} T^{2} \)
43 \( 1 + 10814 T + p^{5} T^{2} \)
47 \( 1 + 26237 T + p^{5} T^{2} \)
53 \( 1 + 25936 T + p^{5} T^{2} \)
59 \( 1 - 4580 T + p^{5} T^{2} \)
61 \( 1 + 12488 T + p^{5} T^{2} \)
67 \( 1 + 15848 T + p^{5} T^{2} \)
71 \( 1 + 51792 T + p^{5} T^{2} \)
73 \( 1 - 4846 T + p^{5} T^{2} \)
79 \( 1 - 62765 T + p^{5} T^{2} \)
83 \( 1 - 23644 T + p^{5} T^{2} \)
89 \( 1 - 147300 T + p^{5} T^{2} \)
97 \( 1 + 8343 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.72762204268833110805514449697, −9.365297930388487405630285878003, −8.432611128998689790895892673645, −6.98997681832332511007365732938, −6.40960342335006387101201120503, −4.85055673527880708862550159975, −4.50470102170429987947047762813, −3.24448811898225928719541408102, −2.01880562975711315218012924910, 0, 2.01880562975711315218012924910, 3.24448811898225928719541408102, 4.50470102170429987947047762813, 4.85055673527880708862550159975, 6.40960342335006387101201120503, 6.98997681832332511007365732938, 8.432611128998689790895892673645, 9.365297930388487405630285878003, 10.72762204268833110805514449697

Graph of the $Z$-function along the critical line