Properties

Label 2-315-1.1-c3-0-25
Degree $2$
Conductor $315$
Sign $-1$
Analytic cond. $18.5856$
Root an. cond. $4.31110$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.70·2-s − 5.10·4-s + 5·5-s + 7·7-s − 22.2·8-s + 8.50·10-s − 37.4·11-s + 29.0·13-s + 11.9·14-s + 2.89·16-s − 58.4·17-s − 54.5·19-s − 25.5·20-s − 63.6·22-s − 161.·23-s + 25·25-s + 49.3·26-s − 35.7·28-s − 137.·29-s + 154.·31-s + 183.·32-s − 99.4·34-s + 35·35-s − 350.·37-s − 92.8·38-s − 111.·40-s − 353.·41-s + ⋯
L(s)  = 1  + 0.601·2-s − 0.638·4-s + 0.447·5-s + 0.377·7-s − 0.985·8-s + 0.269·10-s − 1.02·11-s + 0.619·13-s + 0.227·14-s + 0.0452·16-s − 0.833·17-s − 0.659·19-s − 0.285·20-s − 0.616·22-s − 1.46·23-s + 0.200·25-s + 0.372·26-s − 0.241·28-s − 0.880·29-s + 0.896·31-s + 1.01·32-s − 0.501·34-s + 0.169·35-s − 1.55·37-s − 0.396·38-s − 0.440·40-s − 1.34·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(315\)    =    \(3^{2} \cdot 5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(18.5856\)
Root analytic conductor: \(4.31110\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 315,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - 5T \)
7 \( 1 - 7T \)
good2 \( 1 - 1.70T + 8T^{2} \)
11 \( 1 + 37.4T + 1.33e3T^{2} \)
13 \( 1 - 29.0T + 2.19e3T^{2} \)
17 \( 1 + 58.4T + 4.91e3T^{2} \)
19 \( 1 + 54.5T + 6.85e3T^{2} \)
23 \( 1 + 161.T + 1.21e4T^{2} \)
29 \( 1 + 137.T + 2.43e4T^{2} \)
31 \( 1 - 154.T + 2.97e4T^{2} \)
37 \( 1 + 350.T + 5.06e4T^{2} \)
41 \( 1 + 353.T + 6.89e4T^{2} \)
43 \( 1 + 518.T + 7.95e4T^{2} \)
47 \( 1 - 542.T + 1.03e5T^{2} \)
53 \( 1 + 305.T + 1.48e5T^{2} \)
59 \( 1 + 14.6T + 2.05e5T^{2} \)
61 \( 1 + 171.T + 2.26e5T^{2} \)
67 \( 1 - 551.T + 3.00e5T^{2} \)
71 \( 1 - 120.T + 3.57e5T^{2} \)
73 \( 1 - 284.T + 3.89e5T^{2} \)
79 \( 1 - 941.T + 4.93e5T^{2} \)
83 \( 1 + 377.T + 5.71e5T^{2} \)
89 \( 1 - 677.T + 7.04e5T^{2} \)
97 \( 1 + 1.22e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.71628834787991071714588334763, −9.915843558118206884024008710122, −8.749022061685460881585497054662, −8.112804230021044235271879989329, −6.57278425894894481640026427981, −5.57744502018219020086240826481, −4.71277872264457071646378309301, −3.57332554106405253211400630797, −2.06831059306442767213738978273, 0, 2.06831059306442767213738978273, 3.57332554106405253211400630797, 4.71277872264457071646378309301, 5.57744502018219020086240826481, 6.57278425894894481640026427981, 8.112804230021044235271879989329, 8.749022061685460881585497054662, 9.915843558118206884024008710122, 10.71628834787991071714588334763

Graph of the $Z$-function along the critical line