Properties

Label 2-315-1.1-c3-0-22
Degree $2$
Conductor $315$
Sign $-1$
Analytic cond. $18.5856$
Root an. cond. $4.31110$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 7·4-s + 5·5-s + 7·7-s + 15·8-s − 5·10-s − 12·11-s − 78·13-s − 7·14-s + 41·16-s + 94·17-s + 40·19-s − 35·20-s + 12·22-s − 32·23-s + 25·25-s + 78·26-s − 49·28-s + 50·29-s − 248·31-s − 161·32-s − 94·34-s + 35·35-s − 434·37-s − 40·38-s + 75·40-s − 402·41-s + ⋯
L(s)  = 1  − 0.353·2-s − 7/8·4-s + 0.447·5-s + 0.377·7-s + 0.662·8-s − 0.158·10-s − 0.328·11-s − 1.66·13-s − 0.133·14-s + 0.640·16-s + 1.34·17-s + 0.482·19-s − 0.391·20-s + 0.116·22-s − 0.290·23-s + 1/5·25-s + 0.588·26-s − 0.330·28-s + 0.320·29-s − 1.43·31-s − 0.889·32-s − 0.474·34-s + 0.169·35-s − 1.92·37-s − 0.170·38-s + 0.296·40-s − 1.53·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(315\)    =    \(3^{2} \cdot 5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(18.5856\)
Root analytic conductor: \(4.31110\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 315,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - p T \)
7 \( 1 - p T \)
good2 \( 1 + T + p^{3} T^{2} \)
11 \( 1 + 12 T + p^{3} T^{2} \)
13 \( 1 + 6 p T + p^{3} T^{2} \)
17 \( 1 - 94 T + p^{3} T^{2} \)
19 \( 1 - 40 T + p^{3} T^{2} \)
23 \( 1 + 32 T + p^{3} T^{2} \)
29 \( 1 - 50 T + p^{3} T^{2} \)
31 \( 1 + 8 p T + p^{3} T^{2} \)
37 \( 1 + 434 T + p^{3} T^{2} \)
41 \( 1 + 402 T + p^{3} T^{2} \)
43 \( 1 + 68 T + p^{3} T^{2} \)
47 \( 1 + 536 T + p^{3} T^{2} \)
53 \( 1 + 22 T + p^{3} T^{2} \)
59 \( 1 - 560 T + p^{3} T^{2} \)
61 \( 1 + 278 T + p^{3} T^{2} \)
67 \( 1 + 164 T + p^{3} T^{2} \)
71 \( 1 + 672 T + p^{3} T^{2} \)
73 \( 1 - 82 T + p^{3} T^{2} \)
79 \( 1 + 1000 T + p^{3} T^{2} \)
83 \( 1 - 448 T + p^{3} T^{2} \)
89 \( 1 - 870 T + p^{3} T^{2} \)
97 \( 1 - 1026 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.29093452296666508814143357731, −9.953707418086912419155153838378, −8.953483597381048389930069261851, −7.945959594022488307530582268645, −7.14627912529197374497683297216, −5.42039604938517925824522052087, −4.92184649284991937487056158766, −3.36382697788484203649707309246, −1.68474003499304263991997865840, 0, 1.68474003499304263991997865840, 3.36382697788484203649707309246, 4.92184649284991937487056158766, 5.42039604938517925824522052087, 7.14627912529197374497683297216, 7.945959594022488307530582268645, 8.953483597381048389930069261851, 9.953707418086912419155153838378, 10.29093452296666508814143357731

Graph of the $Z$-function along the critical line