Properties

Label 2-315-1.1-c3-0-2
Degree $2$
Conductor $315$
Sign $1$
Analytic cond. $18.5856$
Root an. cond. $4.31110$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·2-s + 17·4-s − 5·5-s + 7·7-s − 45·8-s + 25·10-s − 12·11-s + 30·13-s − 35·14-s + 89·16-s + 134·17-s − 92·19-s − 85·20-s + 60·22-s − 112·23-s + 25·25-s − 150·26-s + 119·28-s + 58·29-s − 224·31-s − 85·32-s − 670·34-s − 35·35-s − 146·37-s + 460·38-s + 225·40-s − 18·41-s + ⋯
L(s)  = 1  − 1.76·2-s + 17/8·4-s − 0.447·5-s + 0.377·7-s − 1.98·8-s + 0.790·10-s − 0.328·11-s + 0.640·13-s − 0.668·14-s + 1.39·16-s + 1.91·17-s − 1.11·19-s − 0.950·20-s + 0.581·22-s − 1.01·23-s + 1/5·25-s − 1.13·26-s + 0.803·28-s + 0.371·29-s − 1.29·31-s − 0.469·32-s − 3.37·34-s − 0.169·35-s − 0.648·37-s + 1.96·38-s + 0.889·40-s − 0.0685·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(315\)    =    \(3^{2} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(18.5856\)
Root analytic conductor: \(4.31110\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 315,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.6951876293\)
\(L(\frac12)\) \(\approx\) \(0.6951876293\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + p T \)
7 \( 1 - p T \)
good2 \( 1 + 5 T + p^{3} T^{2} \)
11 \( 1 + 12 T + p^{3} T^{2} \)
13 \( 1 - 30 T + p^{3} T^{2} \)
17 \( 1 - 134 T + p^{3} T^{2} \)
19 \( 1 + 92 T + p^{3} T^{2} \)
23 \( 1 + 112 T + p^{3} T^{2} \)
29 \( 1 - 2 p T + p^{3} T^{2} \)
31 \( 1 + 224 T + p^{3} T^{2} \)
37 \( 1 + 146 T + p^{3} T^{2} \)
41 \( 1 + 18 T + p^{3} T^{2} \)
43 \( 1 - 340 T + p^{3} T^{2} \)
47 \( 1 + 208 T + p^{3} T^{2} \)
53 \( 1 - 754 T + p^{3} T^{2} \)
59 \( 1 + 380 T + p^{3} T^{2} \)
61 \( 1 - 718 T + p^{3} T^{2} \)
67 \( 1 - 412 T + p^{3} T^{2} \)
71 \( 1 - 960 T + p^{3} T^{2} \)
73 \( 1 - 1066 T + p^{3} T^{2} \)
79 \( 1 - 896 T + p^{3} T^{2} \)
83 \( 1 + 436 T + p^{3} T^{2} \)
89 \( 1 - 1038 T + p^{3} T^{2} \)
97 \( 1 + 702 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.85825795867688488784881364427, −10.28422601790192977845644585863, −9.293599220545329796901925178813, −8.256730079759568715571231017889, −7.86242577601528338089183343274, −6.78234663194193976534017188524, −5.55833835918804244684565009021, −3.70409121002516072506981423307, −2.08777255820772856016681214572, −0.74893114859549830706408251612, 0.74893114859549830706408251612, 2.08777255820772856016681214572, 3.70409121002516072506981423307, 5.55833835918804244684565009021, 6.78234663194193976534017188524, 7.86242577601528338089183343274, 8.256730079759568715571231017889, 9.293599220545329796901925178813, 10.28422601790192977845644585863, 10.85825795867688488784881364427

Graph of the $Z$-function along the critical line