Properties

Label 2-315-1.1-c1-0-1
Degree $2$
Conductor $315$
Sign $1$
Analytic cond. $2.51528$
Root an. cond. $1.58596$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.23·2-s + 3.00·4-s + 5-s + 7-s − 2.23·8-s − 2.23·10-s + 2.47·11-s − 4.47·13-s − 2.23·14-s − 0.999·16-s + 2·17-s + 6.47·19-s + 3.00·20-s − 5.52·22-s − 4·23-s + 25-s + 10.0·26-s + 3.00·28-s + 2·29-s + 10.4·31-s + 6.70·32-s − 4.47·34-s + 35-s + 10.9·37-s − 14.4·38-s − 2.23·40-s + 2·41-s + ⋯
L(s)  = 1  − 1.58·2-s + 1.50·4-s + 0.447·5-s + 0.377·7-s − 0.790·8-s − 0.707·10-s + 0.745·11-s − 1.24·13-s − 0.597·14-s − 0.249·16-s + 0.485·17-s + 1.48·19-s + 0.670·20-s − 1.17·22-s − 0.834·23-s + 0.200·25-s + 1.96·26-s + 0.566·28-s + 0.371·29-s + 1.88·31-s + 1.18·32-s − 0.766·34-s + 0.169·35-s + 1.79·37-s − 2.34·38-s − 0.353·40-s + 0.312·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(315\)    =    \(3^{2} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(2.51528\)
Root analytic conductor: \(1.58596\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 315,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7134400616\)
\(L(\frac12)\) \(\approx\) \(0.7134400616\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - T \)
7 \( 1 - T \)
good2 \( 1 + 2.23T + 2T^{2} \)
11 \( 1 - 2.47T + 11T^{2} \)
13 \( 1 + 4.47T + 13T^{2} \)
17 \( 1 - 2T + 17T^{2} \)
19 \( 1 - 6.47T + 19T^{2} \)
23 \( 1 + 4T + 23T^{2} \)
29 \( 1 - 2T + 29T^{2} \)
31 \( 1 - 10.4T + 31T^{2} \)
37 \( 1 - 10.9T + 37T^{2} \)
41 \( 1 - 2T + 41T^{2} \)
43 \( 1 + 8.94T + 43T^{2} \)
47 \( 1 - 4.94T + 47T^{2} \)
53 \( 1 - 12.4T + 53T^{2} \)
59 \( 1 + 8.94T + 59T^{2} \)
61 \( 1 + 2T + 61T^{2} \)
67 \( 1 + 4T + 67T^{2} \)
71 \( 1 + 14.4T + 71T^{2} \)
73 \( 1 + 3.52T + 73T^{2} \)
79 \( 1 + 4.94T + 79T^{2} \)
83 \( 1 + 0.944T + 83T^{2} \)
89 \( 1 - 2T + 89T^{2} \)
97 \( 1 + 0.472T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.62966398931597000531890685261, −10.21125968349440310427970103854, −9.847658785994140335906524698581, −8.978317755589890469018592777050, −7.931019640878645555463656269107, −7.23932452918618201643972522127, −6.06427715487538538134474581204, −4.63388650382293388787577376817, −2.63516891990134838988787971033, −1.17993286506386506043984798835, 1.17993286506386506043984798835, 2.63516891990134838988787971033, 4.63388650382293388787577376817, 6.06427715487538538134474581204, 7.23932452918618201643972522127, 7.931019640878645555463656269107, 8.978317755589890469018592777050, 9.847658785994140335906524698581, 10.21125968349440310427970103854, 11.62966398931597000531890685261

Graph of the $Z$-function along the critical line